CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Model-Agnostic Hierarchical Framework Towards Trajectory Prediction
Qian, Tang-Wen1,2; Wang, Yuan1,2; Xu, Yong-Jun1,2; Zhang, Zhao1,2; Wu, Lin1,2; Qiu, Qiang2,3; Wang, Fei1,2
2025-03-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号40期号:2页码:322-339
摘要Predicting the future trajectories of multiple agents is essential for various applications in real life, such as surveillance systems, autonomous driving, and social robots. The trajectory prediction task is influenced by many factors, including the individual historical trajectory, interactions between agents, and the fuzzy nature of the observed agents' motion. While existing methods have made great progress on the topic of trajectory prediction, they treat all the information uniformly, which limits the effectiveness of information utilization. To this end, in this paper, we propose and utilize a model-agnostic framework to regard all the information in a two-level hierarchical view. Particularly, the first-level view is the inter-trajectory view. In this level, we observe that the difficulty in predicting different trajectory samples varies. We define trajectory difficulty and train the proposed framework in an "easy-to-hard" schema. The second-level view is the intra-trajectory level. We find the influencing factors for a particular trajectory can be divided into two parts. The first part is global features, which keep stable within a trajectory, i.e., the expected destination. The second part is local features, which change over time, i.e., the current position. We believe that the two types of information should be handled in different ways. The hierarchical view is beneficial to take full advantage of the information in a fine-grained way. Experimental results validate the effectiveness of the proposed model-agnostic framework.
关键词spatial-temporal data mining trajectory prediction hierarchical framework model-agnostic
DOI10.1007/s11390-023-3013-4
收录类别SCI
语种英语
资助项目Youth Innovation Promotion Association of Chinese Academy of Sciences[2023112] ; National Natural Science Foundation of China[62206266] ; China Postdoctoral Science Foundation[2021M703273]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001483026900016
出版者SPRINGER SINGAPORE PTE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40635
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Domain Oriented Intelligent Syst Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Qian, Tang-Wen,Wang, Yuan,Xu, Yong-Jun,et al. A Model-Agnostic Hierarchical Framework Towards Trajectory Prediction[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2025,40(2):322-339.
APA Qian, Tang-Wen.,Wang, Yuan.,Xu, Yong-Jun.,Zhang, Zhao.,Wu, Lin.,...&Wang, Fei.(2025).A Model-Agnostic Hierarchical Framework Towards Trajectory Prediction.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,40(2),322-339.
MLA Qian, Tang-Wen,et al."A Model-Agnostic Hierarchical Framework Towards Trajectory Prediction".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 40.2(2025):322-339.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qian, Tang-Wen]的文章
[Wang, Yuan]的文章
[Xu, Yong-Jun]的文章
百度学术
百度学术中相似的文章
[Qian, Tang-Wen]的文章
[Wang, Yuan]的文章
[Xu, Yong-Jun]的文章
必应学术
必应学术中相似的文章
[Qian, Tang-Wen]的文章
[Wang, Yuan]的文章
[Xu, Yong-Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。