CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Lossless data compression by large models
Li, Ziguang1,2,3; Huang, Chao4,5; Wang, Xuliang1,4,6; Hu, Haibo4,5; Wyeth, Cole6; Bu, Dongbo1,4; Yu, Quan2; Gao, Wen2; Liu, Xingwu1,7; Li, Ming1,2,3,6
2025-05-01
发表期刊NATURE MACHINE INTELLIGENCE
卷号7期号:5页码:794-799
摘要Data compression is a fundamental technology that enables efficient storage and transmission of information. However, traditional compression methods are approaching their theoretical limits after 80 years of research and development. At the same time, large artificial intelligence models have emerged, which, trained on vast amounts of data, are able to 'understand' various semantics. Intuitively, semantics conveys the meaning of data concisely, so large models hold the potential to revolutionize compression technology. Here we present LMCompress, a new method that leverages large models to compress data. LMCompress shatters all previous lossless compression records on four media types: text, images, video and audio. It halves the compression rates of JPEG-XL for images, FLAC for audio and H.264 for video, and it achieves nearly one-third of the compression rates of zpaq for text. Our results demonstrate that the better a model understands the data, the more effectively it can compress it, suggesting a deep connection between understanding and compression.
DOI10.1038/s42256-025-01033-7
收录类别SCI
语种英语
资助项目Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology)[2022YFA1304603] ; National Key R&D Program of China ; Proteomic Navigator of the Human Body Project[OGP0046506] ; Canada's NSERC ; Canada Research Chair Program[62072433] ; Canada Research Chair Program[62088102] ; Canada Research Chair Program[62025101] ; National Natural Science Foundation of China[2024Z119] ; Kechuang Yongjiang 2035 key technology breakthrough plan of Zhejiang Ningbo
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:001479636100001
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40629
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Xingwu; Li, Ming
作者单位1.Cent China Inst Artificial Intelligence, Zhengzhou, Peoples R China
2.Peng Cheng Lab, Shenzhen, Peoples R China
3.Shanghai Inst Math & Interdisciplinary Sci, Shanghai, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
5.Ningbo Inst Artificial Intelligence Ind, Ningbo, Peoples R China
6.Univ Waterloo, Sch Comp Sci, Waterloo, ON, Canada
7.Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
推荐引用方式
GB/T 7714
Li, Ziguang,Huang, Chao,Wang, Xuliang,et al. Lossless data compression by large models[J]. NATURE MACHINE INTELLIGENCE,2025,7(5):794-799.
APA Li, Ziguang.,Huang, Chao.,Wang, Xuliang.,Hu, Haibo.,Wyeth, Cole.,...&Li, Ming.(2025).Lossless data compression by large models.NATURE MACHINE INTELLIGENCE,7(5),794-799.
MLA Li, Ziguang,et al."Lossless data compression by large models".NATURE MACHINE INTELLIGENCE 7.5(2025):794-799.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Ziguang]的文章
[Huang, Chao]的文章
[Wang, Xuliang]的文章
百度学术
百度学术中相似的文章
[Li, Ziguang]的文章
[Huang, Chao]的文章
[Wang, Xuliang]的文章
必应学术
必应学术中相似的文章
[Li, Ziguang]的文章
[Huang, Chao]的文章
[Wang, Xuliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。