CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PIMCOMP: An End-to-End DNN Compiler for Processing-In-Memory Accelerators
Sun, Xiaotian1,2; Wang, Xinyu1,2; Li, Wanqian1,2; Han, Yinhe1,2; Chen, Xiaoming1,2
2025-05-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号44期号:5页码:1745-1759
摘要In the past decade, various processing-in-memory (PIM) accelerators based on various devices, micro-architectures, and interfaces have been proposed to accelerate deep neural networks (DNNs). How to deploy DNNs onto PIM-based accelerators is the key to explore PIM's high performance and energy efficiency. The scale of DNN models, the diversity of PIM accelerators, and the complexity of deployment are far beyond the human deployment capability. Hence, an automatic deployment methodology is indispensable. In this work, we propose PIMCOMP, an end-to-end DNN compiler tailored for PIM accelerators, achieving efficient deployment of DNN models on PIM hardware. PIMCOMP can adapt to various PIM architectures by using an abstract configurable PIM accelerator template with a set of pseudo instructions, which is a high-level abstraction of the hardware's fundamental functionalities. Through a generic multilevel optimization framework, PIMCOMP realizes an end-to-end conversion from a high-level DNN description to pseudo instructions, which can be further converted to specific hardware intrinsics/primitives. The compilation addresses two critical issues in PIM-accelerated inference from a system perspective: 1) resource utilization and 2) dataflow scheduling. PIMCOMP adopts a flexible unfolding format to reshape and partition convolutional layers, adopts a weight-layout guided computation-storage-mapping approach to enhance resource utilization, and balances the system's computation, memory access, and communication characteristics. For dataflow scheduling, we design two scheduling algorithms with different interlayer pipeline granularities to support varying application scenarios while ensuring high-computational parallelism. Experiments demonstrate that PIMCOMP improves throughput, latency, and energy efficiency across various architectures. PIMCOMP is open-sourced at https://github.com/sunxt99/PIMCOMP-NN.
关键词Hardware Optimization Artificial neural networks Pipelines Parallel processing Biological system modeling Resource management Adaptation models Scheduling Memory management Deep neural network (DNN) end-to-end compiler processing-in-memory (PIM) accelerator system-level optimization
DOI10.1109/TCAD.2024.3496847
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of CAS[XDB44000000] ; National Natural Science Foundation of China[62122076] ; National Natural Science Foundation of China[62025404] ; National Natural Science Foundation of China[62488101] ; Key Research Program of Frontier Sciences, CAS[ZDBS-LY-JSC012] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:001473569900031
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40623
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Xiaoming
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Sun, Xiaotian,Wang, Xinyu,Li, Wanqian,et al. PIMCOMP: An End-to-End DNN Compiler for Processing-In-Memory Accelerators[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2025,44(5):1745-1759.
APA Sun, Xiaotian,Wang, Xinyu,Li, Wanqian,Han, Yinhe,&Chen, Xiaoming.(2025).PIMCOMP: An End-to-End DNN Compiler for Processing-In-Memory Accelerators.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,44(5),1745-1759.
MLA Sun, Xiaotian,et al."PIMCOMP: An End-to-End DNN Compiler for Processing-In-Memory Accelerators".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 44.5(2025):1745-1759.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Xiaotian]的文章
[Wang, Xinyu]的文章
[Li, Wanqian]的文章
百度学术
百度学术中相似的文章
[Sun, Xiaotian]的文章
[Wang, Xinyu]的文章
[Li, Wanqian]的文章
必应学术
必应学术中相似的文章
[Sun, Xiaotian]的文章
[Wang, Xinyu]的文章
[Li, Wanqian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。