CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FZeroTC: fully zero-shot text classification for simultaneously discovering and labeling unseen classes
Duan, Dongsheng1; Lv, Cunchi2,3; Zhang, Cheng2; Hou, Wei1; Shi, Lei1; Li, Yangxi1; Zhao, Xiaofang2,3
2025-04-21
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
页码25
摘要With the explosive data growth on the web, there are massive textual data without class labels such that zero-shot text classification has attracted much research attention. However, existing zero-shot text classification models still take the class labels as the weakly supervised signal, which are usually unavailable in the open domain. In this paper, we study the text classification problem in a fully zero-shot setting, in which not only are we not given any training samples for unseen classes, but also the label names and the total number of unseen classes are unknown. We propose a fully zero-shot text classification model (FZeroTC) in a semi-supervised learning framework to simultaneously discover and label unseen classes. In the FZeroTC model, a pairwise loss and a Kullback-Leibler divergence-based regularization term are specially designed for unseen class discovery, and a faraway loss is specially designed for class labeling. We propose three different kinds of learning strategies based on the pretrained language model and prompt learning to train FZeroTC. From extensive experiments on four public text classification datasets, FZeroTC outperforms the state-of-the-art zero-shot text classification models in terms of unseen class discovery performance and can provide high-quality labels for unseen classes.
关键词Zero-shot text classification Semi-supervised learning Pretrained language model Prompt learning Class discovery Class labeling
DOI10.1007/s10115-025-02379-5
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62272125] ; National Natural Science Foundation of China[62192785]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:001471214800001
出版者SPRINGER LONDON LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40603
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Duan, Dongsheng; Zhang, Cheng
作者单位1.Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing 100029, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Duan, Dongsheng,Lv, Cunchi,Zhang, Cheng,et al. FZeroTC: fully zero-shot text classification for simultaneously discovering and labeling unseen classes[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2025:25.
APA Duan, Dongsheng.,Lv, Cunchi.,Zhang, Cheng.,Hou, Wei.,Shi, Lei.,...&Zhao, Xiaofang.(2025).FZeroTC: fully zero-shot text classification for simultaneously discovering and labeling unseen classes.KNOWLEDGE AND INFORMATION SYSTEMS,25.
MLA Duan, Dongsheng,et al."FZeroTC: fully zero-shot text classification for simultaneously discovering and labeling unseen classes".KNOWLEDGE AND INFORMATION SYSTEMS (2025):25.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Duan, Dongsheng]的文章
[Lv, Cunchi]的文章
[Zhang, Cheng]的文章
百度学术
百度学术中相似的文章
[Duan, Dongsheng]的文章
[Lv, Cunchi]的文章
[Zhang, Cheng]的文章
必应学术
必应学术中相似的文章
[Duan, Dongsheng]的文章
[Lv, Cunchi]的文章
[Zhang, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。