CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FaTNET: Feature-alignment transformer network for human pose transfer
Luo, Yu1; Yuan, Chengzhi1; Gao, Lin2; Xu, Weiwei3; Yang, Xiaosong4; Wang, Pengjie1
2025-09-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号165页码:10
摘要Pose-guided person image generation involves converting an image of a person from a source pose pose. This task presents significant challenges due to the extensive variability and occlusion. Existing heavily rely on CNN-based architectures, which are constrained by their local receptive fields and often to preserve the details of style and shape. To address this problem, we propose a novel framework pose transfer with transformers, which can employ global dependencies and keep local features as proposed framework consists of transformer encoder, feature alignment network and transformer network, enabling the generation of realistic person images with desired poses. The core idea of our is to obtain a novel prior image aligned with the target image through the feature alignment network embedded and disentangled feature space, and then synthesize the final fine image through the transformer synthetic network by recurrently warping the result of previous stage with the correlation matrix aligned features and source images. In contrast to previous convolution and non-local methods, employ the global receptive field and preserve detail features as well. The results of qualitative and quantitative experiments demonstrate the superiority of our model in human pose transfer.
关键词People image generation Human pose transfer Generative adversarial network Transformers
DOI10.1016/j.patcog.2025.111626
收录类别SCI
语种英语
资助项目European Union[900025] ; Natural Science Foundation of Liaoning[2023-MS-133] ; Liaoning Provincial Education Department, China[LJ242412026018] ; Marie Curie Actions (MSCA)[900025]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001466546600001
出版者ELSEVIER SCI LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40591
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Pengjie
作者单位1.Dalian Minzu Univ, 18 Liaohe West Rd, Dalian 116000, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100080, Peoples R China
3.Zhejiang Univ, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
4.Bournemouth Univ, Poole BH12 5BB, Dorset, England
推荐引用方式
GB/T 7714
Luo, Yu,Yuan, Chengzhi,Gao, Lin,et al. FaTNET: Feature-alignment transformer network for human pose transfer[J]. PATTERN RECOGNITION,2025,165:10.
APA Luo, Yu,Yuan, Chengzhi,Gao, Lin,Xu, Weiwei,Yang, Xiaosong,&Wang, Pengjie.(2025).FaTNET: Feature-alignment transformer network for human pose transfer.PATTERN RECOGNITION,165,10.
MLA Luo, Yu,et al."FaTNET: Feature-alignment transformer network for human pose transfer".PATTERN RECOGNITION 165(2025):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Yu]的文章
[Yuan, Chengzhi]的文章
[Gao, Lin]的文章
百度学术
百度学术中相似的文章
[Luo, Yu]的文章
[Yuan, Chengzhi]的文章
[Gao, Lin]的文章
必应学术
必应学术中相似的文章
[Luo, Yu]的文章
[Yuan, Chengzhi]的文章
[Gao, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。