CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MFDiff: multiscale feature diffusion model for segmentation of 3D intracranial aneurysm from CT images
Pei, Xinyu1; Ren, Yande2; Tang, Yueshan2; Wang, Yuanquan1; Zhang, Lei1; Wei, Jin3; Zhao, Di4
2024-06-01
发表期刊PATTERN ANALYSIS AND APPLICATIONS
ISSN1433-7541
卷号27期号:2页码:13
摘要Intracranial aneurysm is a common life-threatening disease, and the rupture of an intracranial aneurysm carries a high risk of morbidity and mortality. Due to their small size in images, it remains a challenging task to accurately extract the intracranial aneurysms in CT images. In this paper, we propose a multi-scale feature diffusion model, named as MFDiff in short, for segmentation of 3D intracranial aneurysm. The proposed MFDiff includes a feature extraction module and a diffusion model. The feature extraction module is designed to extract features of the original image, and the features act as conditional priors to guide the diffusion model to gradually generate segmentation maps. The diffusion model takes a structure similar to U-Net as backbone, and there is a residual multi-scale feature fusion attention module (RMFA) in the diffusion model, which can adapt to intracranial aneurysms of different size due to multi-scale features. A local CT image dataset is employed for experiment, there are both ruptured and unruptured intracranial aneurysms in the images, and the size of intracranial aneurysms is various, even less than 3 mm. Compared with other popular methods, such as U-Net, GLIA-Net, UNETR++ , LinTransUNet, Swin UNETR, the proposed MFDiff shows better performance in intracranial aneurysm segmentation, the segmentation precision is 82.91% when the aneurysms of just size larger than 3 mm are taken into account, and the precision is 75.53% when considering aneurysms of all size.
关键词Diffusion model Swin transformer CT Intracranial aneurysm Image segmentation
DOI10.1007/s10044-024-01266-z
收录类别SCI
语种英语
资助项目National Science Foundation of China[61976241] ; National Science Foundation of China (NSFC)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001227402600001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40091
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Yuanquan; Zhang, Lei
作者单位1.Hebei Univ Technol HeBUT, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
2.Qingdao Univ, Dept Radiol, Affiliated Hosp, Qingdao, Shandong, Peoples R China
3.Third Cent Hosp Tianjin, Tianjin 300171, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Pei, Xinyu,Ren, Yande,Tang, Yueshan,et al. MFDiff: multiscale feature diffusion model for segmentation of 3D intracranial aneurysm from CT images[J]. PATTERN ANALYSIS AND APPLICATIONS,2024,27(2):13.
APA Pei, Xinyu.,Ren, Yande.,Tang, Yueshan.,Wang, Yuanquan.,Zhang, Lei.,...&Zhao, Di.(2024).MFDiff: multiscale feature diffusion model for segmentation of 3D intracranial aneurysm from CT images.PATTERN ANALYSIS AND APPLICATIONS,27(2),13.
MLA Pei, Xinyu,et al."MFDiff: multiscale feature diffusion model for segmentation of 3D intracranial aneurysm from CT images".PATTERN ANALYSIS AND APPLICATIONS 27.2(2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pei, Xinyu]的文章
[Ren, Yande]的文章
[Tang, Yueshan]的文章
百度学术
百度学术中相似的文章
[Pei, Xinyu]的文章
[Ren, Yande]的文章
[Tang, Yueshan]的文章
必应学术
必应学术中相似的文章
[Pei, Xinyu]的文章
[Ren, Yande]的文章
[Tang, Yueshan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。