CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix
Zhang, Ran1; Chen, Xiaohui1; Ye, Lin1; Yu, Wentao1,2; Zhang, Bing1; Liu, Junnan3
2024-05-01
发表期刊APPLIED SCIENCES-BASEL
卷号14期号:10页码:20
摘要This study proposes a vessel position prediction method using attention spatiotemporal graph convolutional networks, which addresses the issue of low prediction accuracy due to less consideration of inter-feature dependencies in current vessel trajectory prediction methods. First, the method cleans the vessel trajectory data and uses the Time-ratio trajectory compression algorithm to compress the trajectory data, avoiding data redundancy and providing feature points for vessel trajectories. Second, the Spectral Temporal Graph Neural Network (StemGNN) extracts the correlation matrix that describes the relationship between multiple variables as a priori matrix input to the prediction model. Then the vessel trajectory prediction model is constructed, and the attention mechanism is added to the spatial and temporal dimensions of the trajectory data based on the spatio-temporal graph convolutional network at the same time as the above operations are performed on different time scales. Finally, the features extracted from different time scales are fused through the full connectivity layer to predict the future trajectories. Experimental results show that this method achieves higher accuracy and more stable prediction results in trajectory prediction. The attention-based spatio-temporal graph convolutional networks effectively capture the spatio-temporal correlations of the main features in vessel trajectories, and the spatio-temporal attention mechanism and graph convolution have certain interpretability for the prediction results.
关键词ais trajectory prediction attention mechanism spatio-temporal graph convolution
DOI10.3390/app14104104
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:001232735100001
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40061
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Xiaohui
作者单位1.Informat Engn Univ, Inst Data & Target Engn, Zhengzhou 450001, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Zhengzhou Univ, Inst Geosci & Technol, Zhengzhou 450001, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Ran,Chen, Xiaohui,Ye, Lin,et al. Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix[J]. APPLIED SCIENCES-BASEL,2024,14(10):20.
APA Zhang, Ran,Chen, Xiaohui,Ye, Lin,Yu, Wentao,Zhang, Bing,&Liu, Junnan.(2024).Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix.APPLIED SCIENCES-BASEL,14(10),20.
MLA Zhang, Ran,et al."Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix".APPLIED SCIENCES-BASEL 14.10(2024):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Ran]的文章
[Chen, Xiaohui]的文章
[Ye, Lin]的文章
百度学术
百度学术中相似的文章
[Zhang, Ran]的文章
[Chen, Xiaohui]的文章
[Ye, Lin]的文章
必应学术
必应学术中相似的文章
[Zhang, Ran]的文章
[Chen, Xiaohui]的文章
[Ye, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。