CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Towards Robust Semantic Segmentation against Patch-Based Attack via Attention Refinement
Yuan, Zheng1,2,3; Zhang, Jie1,2,3; Wang, Yude1,2,3; Shan, Shiguang1,2,3; Chen, Xilin1,2,3
2024-06-07
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
ISSN0920-5691
页码23
摘要The attention mechanism has been proven effective on various visual tasks in recent years. In the semantic segmentation task, the attention mechanism is applied in various methods, including the case of both convolution neural networks and vision transformer as backbones. However, we observe that the attention mechanism is vulnerable to patch-based adversarial attacks. Through the analysis of the effective receptive field, we attribute it to the fact that the wide receptive field brought by global attention may lead to the spread of the adversarial patch. To address this issue, in this paper, we propose a robust attention mechanism (RAM) to improve the robustness of the semantic segmentation model, which can notably relieve the vulnerability against patch-based attacks. Compared to the vallina attention mechanism, RAM introduces two novel modules called max attention suppression and random attention dropout, both of which aim to refine the attention matrix and limit the influence of a single adversarial patch on the semantic segmentation results of other positions. Extensive experiments demonstrate the effectiveness of our RAM to improve the robustness of semantic segmentation models against various patch-based attack methods under different attack settings.
关键词Model robustness Attention mechanism Semantic segmentation Patch-based attack
DOI10.1007/s11263-024-02120-9
收录类别SCI
语种英语
资助项目National Key R &D Program of China ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0680000] ; Beijing Nova Program[20230484368] ; National Natural Science Foundation of China[62176251] ; Youth Innovation Promotion Association CAS ; [2021YFC3310100]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001240467000001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40033
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Jie
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Key Lab AI Safety, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Zheng,Zhang, Jie,Wang, Yude,et al. Towards Robust Semantic Segmentation against Patch-Based Attack via Attention Refinement[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2024:23.
APA Yuan, Zheng,Zhang, Jie,Wang, Yude,Shan, Shiguang,&Chen, Xilin.(2024).Towards Robust Semantic Segmentation against Patch-Based Attack via Attention Refinement.INTERNATIONAL JOURNAL OF COMPUTER VISION,23.
MLA Yuan, Zheng,et al."Towards Robust Semantic Segmentation against Patch-Based Attack via Attention Refinement".INTERNATIONAL JOURNAL OF COMPUTER VISION (2024):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Zheng]的文章
[Zhang, Jie]的文章
[Wang, Yude]的文章
百度学术
百度学术中相似的文章
[Yuan, Zheng]的文章
[Zhang, Jie]的文章
[Wang, Yude]的文章
必应学术
必应学术中相似的文章
[Yuan, Zheng]的文章
[Zhang, Jie]的文章
[Wang, Yude]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。