CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
UAV Trajectory Optimization for Large-Scale and Low-Power Data Collection: An Attention-Reinforced Learning Scheme
Zhu, Yuchen1,2; Yang, Bo3; Liu, Min1,2,4; Li, Zhongcheng1,2
2024-04-01
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:5.888[JCR-2017],5.855[5-Year])
ISSN1536-1276
卷号23期号:4页码:3009-3024
摘要Unmanned Aerial Vehicles (UAVs) exhibit great advantages in data collection from ground sensors in vast tracts of fields. Due to their limited power supply, most works assume that the UAV simply traverses each sensor's fixed transmission range to collect data, thereby shortening the flight path. However, they neglect the quality of collected data, which may deteriorate dramatically as the transmission distance increases. In this paper, by leveraging the physical-layer protocol - LoRa, we propose a Packet Reception Ratio (PRR)-based probabilistic coverage model to evaluate the quality of data transmission, which directly determines the data acquisition efficiency. On this basis, to minimize the energy consumption of UAV and sensors while ensuring high-quality data acquisition, we formulate the UAV trajectory planning as a joint Energy Consumption and data Acquisition Efficiency (ECAE) optimization problem. To tackle the ECAE problem, we propose a Deep Reinforcement Learning (DRL)-based two-stage scheme. First, an attention-based encoder-decoder model is trained to generate an initial trajectory. Then an intuitive optimization algorithm is devised to further explore the optimal trajectory. Evaluation results show that our scheme can reduce the total energy cost of UAV and sensors by 27.1% as compared to the best baseline's policy while maintaining a promising PRR.
关键词Autonomous aerial vehicles Sensors Data collection Energy consumption Wireless communication Optimization Data models Unmanned aerial vehicle trajectory optimization data collection attention model deep reinforcement learning LoRa
DOI10.1109/TWC.2023.3304900
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001201360000088
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40021
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Northwest A&F Univ, Coll Informat Engn, Yangling 712100, Peoples R China
4.Zhongguancun Lab, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yuchen,Yang, Bo,Liu, Min,et al. UAV Trajectory Optimization for Large-Scale and Low-Power Data Collection: An Attention-Reinforced Learning Scheme[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,23(4):3009-3024.
APA Zhu, Yuchen,Yang, Bo,Liu, Min,&Li, Zhongcheng.(2024).UAV Trajectory Optimization for Large-Scale and Low-Power Data Collection: An Attention-Reinforced Learning Scheme.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,23(4),3009-3024.
MLA Zhu, Yuchen,et al."UAV Trajectory Optimization for Large-Scale and Low-Power Data Collection: An Attention-Reinforced Learning Scheme".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 23.4(2024):3009-3024.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Yuchen]的文章
[Yang, Bo]的文章
[Liu, Min]的文章
百度学术
百度学术中相似的文章
[Zhu, Yuchen]的文章
[Yang, Bo]的文章
[Liu, Min]的文章
必应学术
必应学术中相似的文章
[Zhu, Yuchen]的文章
[Yang, Bo]的文章
[Liu, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。