CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
REACT: Remainder Adaptive Compensation for Domain Adaptive Object Detection
Li, Haochen1,2; Zhang, Rui3; Yao, Hantao4; Zhang, Xin3; Hao, Yifan3; Song, Xinkai3; Li, Ling1,2
2024
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号33页码:3735-3748
摘要Domain adaptive object detection (DAOD) aims to infer a robust detector on the target domain with the labelled source datasets. Recent studies utilize a feature extractor shared on the source and target domains to capture the domain-invariant features and the task-relevant information with both feature-alignment constraint and source annotations. However, the feature extractor shared across domains discards partial task-relevant information of the target domain due to the domain gap and lack of target annotations, leading to compromised discrimination capabilities within target domain. To this end, we propose a novel REmainder Adaptive CompensaTion network (REACT) to adaptively compensate the extracted features with the remainder features for generating task-relevant features. The key insight is that the remainder features contain the discarded task-relevant information, so they can be adapted to compensate for the inadequate target features. Especially, REACT introduces an additional remainder branch to regain the remainder features, and then adaptively utilizes them to compensate for the discarded task-relevant information, improving discrimination on the target domain. Extensive experiments over multiple cross-domain adaptation tasks with three baselines demonstrate that our approach gains significant improvements and achieves superior performance compared with highly-optimized state-of-the-art methods.
关键词Unsupervised domain adaptation domain adaptive object detection feature extraction prototypes
DOI10.1109/TIP.2024.3409024
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001248109100003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39927
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Rui; Li, Ling
作者单位1.Chinese Acad Sci, Inst Software, Intelligent Software Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Haochen,Zhang, Rui,Yao, Hantao,et al. REACT: Remainder Adaptive Compensation for Domain Adaptive Object Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2024,33:3735-3748.
APA Li, Haochen.,Zhang, Rui.,Yao, Hantao.,Zhang, Xin.,Hao, Yifan.,...&Li, Ling.(2024).REACT: Remainder Adaptive Compensation for Domain Adaptive Object Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,33,3735-3748.
MLA Li, Haochen,et al."REACT: Remainder Adaptive Compensation for Domain Adaptive Object Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 33(2024):3735-3748.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Haochen]的文章
[Zhang, Rui]的文章
[Yao, Hantao]的文章
百度学术
百度学术中相似的文章
[Li, Haochen]的文章
[Zhang, Rui]的文章
[Yao, Hantao]的文章
必应学术
必应学术中相似的文章
[Li, Haochen]的文章
[Zhang, Rui]的文章
[Yao, Hantao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。