CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Dual-channel relative position guided attention networks for aspect-based sentiment analysis
Gao, Xuejian1; Liu, Fang'ai1; Zhuang, Xuqiang2; Tian, Xiaohui1; Zhang, Yujuan1; Liu, Kenan3
2024-11-01
发表期刊EXPERT SYSTEMS WITH APPLICATIONS
ISSN0957-4174
卷号253页码:14
摘要Aspect -based sentiment analysis (ABSA) aims to match sentiment tendencies for different aspects of a sentence to understand the product experience of the user. It is a pressing challenge for existing ABSA methods to synthesize sentences' semantic relevance and syntactic dependency for more comprehensive sentiment representations. In this paper, we propose a Dual -Channel Relative Position Guided Attention Network (DualRPGA). Dual-RPGA deeply learns semantic and syntactic representations of sentiment to provide reliable knowledge for dynamic fusion and prediction of sentiment. First, we design a syntactic graph attention network (Syn-GAT) to learn the syntactic relative position between aspect and context, which guides the sentiment syntactic representation. Then, we build a semantic attention network (Sem -Attention). It computes semantic attention and similarity coefficients for aspects and contexts to enhance sentiment semantic expressions. Finally, we design a fusion network (Bi-Fusion) that realizes dynamic feature interactions of sentiment semantics and syntactics to perform sentiment prediction. We conduct extensive experiments on two groups of datasets to validate the performance of Dual-RPGA on the ABSA task. The results show that Dual-RPGA outperforms the optimal baseline by 0.58% similar to 1.49% of the Acc score, which verifies that Dual-RPGA performs better on the ABSA task.
关键词Aspect-based sentiment analysis Graph neural network Semantic correlation Syntactic dependency
DOI10.1016/j.eswa.2024.124271
收录类别SCI
语种英语
资助项目Natural Science Foundation of Shandong Province[ZR202011020044] ; National Natural Science Foundation of China[61772321]
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:001247600800004
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39919
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Fang'ai
作者单位1.Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China
2.Shandong Normal Univ, Off Informatizat, Jinan 250014, Shandong, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Gao, Xuejian,Liu, Fang'ai,Zhuang, Xuqiang,et al. Dual-channel relative position guided attention networks for aspect-based sentiment analysis[J]. EXPERT SYSTEMS WITH APPLICATIONS,2024,253:14.
APA Gao, Xuejian,Liu, Fang'ai,Zhuang, Xuqiang,Tian, Xiaohui,Zhang, Yujuan,&Liu, Kenan.(2024).Dual-channel relative position guided attention networks for aspect-based sentiment analysis.EXPERT SYSTEMS WITH APPLICATIONS,253,14.
MLA Gao, Xuejian,et al."Dual-channel relative position guided attention networks for aspect-based sentiment analysis".EXPERT SYSTEMS WITH APPLICATIONS 253(2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Xuejian]的文章
[Liu, Fang'ai]的文章
[Zhuang, Xuqiang]的文章
百度学术
百度学术中相似的文章
[Gao, Xuejian]的文章
[Liu, Fang'ai]的文章
[Zhuang, Xuqiang]的文章
必应学术
必应学术中相似的文章
[Gao, Xuejian]的文章
[Liu, Fang'ai]的文章
[Zhuang, Xuqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。