CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
GCSA: A New Adversarial Example-Generating Scheme Toward Black-Box Adversarial Attacks
Fan, Xinxin1; Li, Mengfan1; Zhou, Jia2; Jing, Quanliang1; Lin, Chi3; Lu, Yunfeng4; Bi, Jingping1
2024-02-01
发表期刊IEEE TRANSACTIONS ON CONSUMER ELECTRONICS
ISSN0098-3063
卷号70期号:1页码:2038-2048
摘要This paper focuses on the transferability problem of adversarial examples towards black-box attack scenarios wherein model information such as the neural network structure is unavailable. To tackle this predicament, we propose a new adversarial example-generating scheme through bridging a data-modal conversion regime to spawn transferable adversarial examples without referring to the substitute model. Three contributions are mainly involved: i) we figure out an integrated framework to produce transferable adversarial examples through resorting to three components, i.e., image-to-graph conversion, perturbation on converted graph and graph-to-image inversion; ii) upon the conversion from image to graph, we pinpoint critical graph characteristics to implement perturbation using gradient-oriented and optimization-oriented adversarial attacks, then, invert the perturbation on graph into the pixel disturbance correspondingly; iii) multi-facet experiments verify the reasonability and effectiveness with the comparison to three baseline methods. Our work has two novelties: first, without referring to the substitute model, our proposed scheme does not need to acquire any information about the victim model in advance; second, we explore the possibility that inferring the adversarial features of image data through drawing support from network/graph science. In addition, we present three key issues worth deeper discussion, along with these open issues, our work deserves more studies in future.
关键词Closed box Perturbation methods Predictive models Indexes Training Glass box Optimization Deep learning adversarial examples black-box adversarial attack transferability
DOI10.1109/TCE.2024.3358179
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001244821700068
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39913
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fan, Xinxin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Bank Commun, Shanghai 200120, Peoples R China
3.Dalian Univ Technol, Sch Software Technol, Dalian 116024, Peoples R China
4.Beihang Univ, Sch Reliabil & Syst, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Fan, Xinxin,Li, Mengfan,Zhou, Jia,et al. GCSA: A New Adversarial Example-Generating Scheme Toward Black-Box Adversarial Attacks[J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,2024,70(1):2038-2048.
APA Fan, Xinxin.,Li, Mengfan.,Zhou, Jia.,Jing, Quanliang.,Lin, Chi.,...&Bi, Jingping.(2024).GCSA: A New Adversarial Example-Generating Scheme Toward Black-Box Adversarial Attacks.IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,70(1),2038-2048.
MLA Fan, Xinxin,et al."GCSA: A New Adversarial Example-Generating Scheme Toward Black-Box Adversarial Attacks".IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 70.1(2024):2038-2048.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Xinxin]的文章
[Li, Mengfan]的文章
[Zhou, Jia]的文章
百度学术
百度学术中相似的文章
[Fan, Xinxin]的文章
[Li, Mengfan]的文章
[Zhou, Jia]的文章
必应学术
必应学术中相似的文章
[Fan, Xinxin]的文章
[Li, Mengfan]的文章
[Zhou, Jia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。