CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting
Qin, Yanjun1; Tao, Xiaoming1; Fang, Yuchen2; Luo, Haiyong3; Zhao, Fang2; Wang, Chenxing2
2024-06-15
发表期刊IEEE INTERNET OF THINGS JOURNAL
ISSN2327-4662
卷号11期号:12页码:22208-22219
摘要Traffic forecasting belongs to intelligent transportation systems and is helpful for public property and life safety. Therefore, to forecast traffic accurately, researchers pay great attention to dealing with complex problems by mining intricate spatial and temporal dependencies of the traffic. However, some challenges still hold back traffic forecasting: 1) Most studies mainly focus on modeling correlations of traffic time series of close distances on the road network and ignore correlations of remote but similar traffic time series; 2) Previous static graph-based methods failed to reflect the dynamic changed spatial relations of multiple time series in the evolving traffic system. To tackle the above issues, we design a new dynamic multigraph spatio-temporal convolution network (DMGSTCN) in this article, which utilizes the gated causal convolution with the dynamic multigraph convolution network (DMGCN) to simultaneously extract spatial and temporal information. Specifically, DMGCN uses not only distance-based graphs but also structure-based graphs to obtain spatial information from nearby and remote but similar traffic time series, respectively. Moreover, to dynamically model spatial correlations, DMGCN first splits neighbors of each traffic time series into different regions according to relative position relationships. Then DMGCN assigns different weights to different regions at different time slices. Empirical evaluations on four traffic forecasting benchmarks reveal that DMGSTCN outperforms existing methods.
关键词Time series analysis Convolution Forecasting Correlation Task analysis Roads Predictive models Graph convolution network (GCN) spatial-temporal data traffic forecasting
DOI10.1109/JIOT.2024.3380746
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001242362600105
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39911
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tao, Xiaoming
作者单位1.Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
2.Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Beijing 100876, Peoples R China
3.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Qin, Yanjun,Tao, Xiaoming,Fang, Yuchen,et al. DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting[J]. IEEE INTERNET OF THINGS JOURNAL,2024,11(12):22208-22219.
APA Qin, Yanjun,Tao, Xiaoming,Fang, Yuchen,Luo, Haiyong,Zhao, Fang,&Wang, Chenxing.(2024).DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting.IEEE INTERNET OF THINGS JOURNAL,11(12),22208-22219.
MLA Qin, Yanjun,et al."DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting".IEEE INTERNET OF THINGS JOURNAL 11.12(2024):22208-22219.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qin, Yanjun]的文章
[Tao, Xiaoming]的文章
[Fang, Yuchen]的文章
百度学术
百度学术中相似的文章
[Qin, Yanjun]的文章
[Tao, Xiaoming]的文章
[Fang, Yuchen]的文章
必应学术
必应学术中相似的文章
[Qin, Yanjun]的文章
[Tao, Xiaoming]的文章
[Fang, Yuchen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。