CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Listwise Generative Retrieval Models via a Sequential Learning Process
Tang, Yubao1,2; Zhang, Ruqing1,2; Guo, Jiafeng1,2; De Rijke, Maarten3; Chen, Wei1,2; Cheng, Xueqi1,2
2024-09-01
发表期刊ACM TRANSACTIONS ON INFORMATION SYSTEMS
ISSN1046-8188
卷号42期号:5页码:31
摘要Recently, a novel generative retrieval (GR) paradigm has been proposed, where a single sequence-to-sequence model is learned to directly generate a list of relevant document identifiers (docids) given a query. Existing GR models commonly employ maximum likelihood estimation (MLE) for optimization: This involves maximizing the likelihood of a single relevant docid given an input query, with the assumption that the likelihood for each docid is independent of the other docids in the list. We refer to these models as the pointwise approach in this article. While the pointwise approach has been shown to be effective in the context of GR, it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about lists. In this article, we address this limitation by introducing an alternative listwise approach, which empowers the GR model to optimize the relevance at the docid list level. Specifically, we view the generation of a ranked docid list as a sequence learning process: At each step, we learn a subset of parameters that maximizes the corresponding generation likelihood of the ith docid given the (preceding) top i - 1 docids. To formalize the sequence learning process, we design a positional conditional probability for GR. To alleviate the potential impact of beam search on the generation quality during inference, we perform relevance calibration on the generation likelihood of model-generated docids according to relevance grades. We conduct extensive experiments on representative binary and multi-graded relevance datasets. Our empirical results demonstrate that our method outperforms state-of-the-art GR baselines in terms of retrieval performance.
关键词Document retrieval generative retrieval listwise approach
DOI10.1145/3653712
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the CAS[XDB0680102] ; National Key Research and Development Program of China[2023YFA1011602] ; National Key Research and Development Program of China[JCKY2022130C039] ; Lenovo-CAS Joint Lab Youth Scientist Project ; CAS Project for Young Scientists in Basic Research[YSBR-034] ; Innovation Project of ICT CAS[E261090] ; Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific Research - Dutch Research Council (NWO)[NWA.1389.20.183] ; Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific Research - Dutch Research Council (NWO)[NWA ORC 2020/21] ; European Union's Horizon Europe research and innovation program[101070212]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001253867000021
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39847
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Jiafeng
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, 6 Kexueyuan South Rd, Beijing, Peoples R China
3.Univ Amsterdam, Amsterdam, Netherlands
推荐引用方式
GB/T 7714
Tang, Yubao,Zhang, Ruqing,Guo, Jiafeng,et al. Listwise Generative Retrieval Models via a Sequential Learning Process[J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS,2024,42(5):31.
APA Tang, Yubao,Zhang, Ruqing,Guo, Jiafeng,De Rijke, Maarten,Chen, Wei,&Cheng, Xueqi.(2024).Listwise Generative Retrieval Models via a Sequential Learning Process.ACM TRANSACTIONS ON INFORMATION SYSTEMS,42(5),31.
MLA Tang, Yubao,et al."Listwise Generative Retrieval Models via a Sequential Learning Process".ACM TRANSACTIONS ON INFORMATION SYSTEMS 42.5(2024):31.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, Yubao]的文章
[Zhang, Ruqing]的文章
[Guo, Jiafeng]的文章
百度学术
百度学术中相似的文章
[Tang, Yubao]的文章
[Zhang, Ruqing]的文章
[Guo, Jiafeng]的文章
必应学术
必应学术中相似的文章
[Tang, Yubao]的文章
[Zhang, Ruqing]的文章
[Guo, Jiafeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。