CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SAC-GAN: Structure-Aware Image Composition
Zhou, Hang1; Ma, Rui2,3; Zhang, Ling-Xiao4; Gao, Lin4; Mahdavi-Amiri, Ali1; Zhang, Hao1
2024-07-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号30期号:7页码:3151-3165
摘要We introduce an end-to-end learning framework for image-to-image composition, aiming to plausibly compose an object represented as a cropped patch from an object image into a background scene image. As our approach emphasizes more on semantic and structural coherence of the composed images, rather than their pixel-level RGB accuracies, we tailor the input and output of our network with structure-aware features and design our network losses accordingly, with ground truth established in a self-supervised setting through the object cropping. Specifically, our network takes the semantic layout features from the input scene image, features encoded from the edges and silhouette in the input object patch, as well as a latent code as inputs, and generates a 2D spatial affine transform defining the translation and scaling of the object patch. The learned parameters are further fed into a differentiable spatial transformer network to transform the object patch into the target image, where our model is trained adversarially using an affine transform discriminator and a layout discriminator. We evaluate our network, coined SAC-GAN, for various image composition scenarios in terms of quality, composability, and generalizability of the composite images. Comparisons are made to state-of-the-art alternatives, including Instance Insertion, ST-GAN, CompGAN and PlaceNet, confirming superiority of our method.
关键词Layout Transforms Semantics Three-dimensional displays Image edge detection Codes Coherence Structure-aware image composition self-supervision GANs
DOI10.1109/TVCG.2022.3226689
收录类别SCI
语种英语
资助项目NSERC Discovery[611370] ; National Natural Science Funds of China[62202199]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001258936700035
出版者IEEE COMPUTER SOC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39835
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Rui
作者单位1.Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
2.Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Peoples R China
3.Minist Educ, Engn Res Ctr Knowledge Driven Human Machine Intell, Changchun 130012, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Hang,Ma, Rui,Zhang, Ling-Xiao,et al. SAC-GAN: Structure-Aware Image Composition[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2024,30(7):3151-3165.
APA Zhou, Hang,Ma, Rui,Zhang, Ling-Xiao,Gao, Lin,Mahdavi-Amiri, Ali,&Zhang, Hao.(2024).SAC-GAN: Structure-Aware Image Composition.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,30(7),3151-3165.
MLA Zhou, Hang,et al."SAC-GAN: Structure-Aware Image Composition".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 30.7(2024):3151-3165.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Hang]的文章
[Ma, Rui]的文章
[Zhang, Ling-Xiao]的文章
百度学术
百度学术中相似的文章
[Zhou, Hang]的文章
[Ma, Rui]的文章
[Zhang, Ling-Xiao]的文章
必应学术
必应学术中相似的文章
[Zhou, Hang]的文章
[Ma, Rui]的文章
[Zhang, Ling-Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。