Institute of Computing Technology, Chinese Academy IR
NeRF-Texture: Synthesizing Neural Radiance Field Textures | |
Huang, Yi-Hua1,2; Cao, Yan-Pei3; Lai, Yu-Kun4; Shan, Ying5; Gao, Lin1,2 | |
2024-09-01 | |
发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE |
ISSN | 0162-8828 |
卷号 | 46期号:9页码:5986-6000 |
摘要 | Texture synthesis is a fundamental problem in computer graphics that would benefit various applications. Existing methods are effective in handling 2D image textures. In contrast, many real-world textures contain meso-structure in the 3D geometry space, such as grass, leaves, and fabrics, which cannot be effectively modeled using only 2D image textures. We propose a novel texture synthesis method with Neural Radiance Fields (NeRF) to capture and synthesize textures from given multi-view images. In the proposed NeRF texture representation, a scene with fine geometric details is disentangled into the meso-structure textures and the underlying base shape. This allows textures with meso-structure to be effectively learned as latent features situated on the base shape, which are fed into a NeRF decoder trained simultaneously to represent the rich view-dependent appearance. Using this implicit representation, we can synthesize NeRF-based textures through patch matching of latent features. However, inconsistencies between the metrics of the reconstructed content space and the latent feature space may compromise the synthesis quality. To enhance matching performance, we further regularize the distribution of latent features by incorporating a clustering constraint. In addition to generating NeRF textures over a planar domain, our method can also synthesize NeRF textures over curved surfaces, which are practically useful. Experimental results and evaluations demonstrate the effectiveness of our approach. |
关键词 | Shape Rendering (computer graphics) Surface texture Feature extraction Geometry Optimization Image reconstruction Meso-structure texture neural radiance fields texture synthesis |
DOI | 10.1109/TPAMI.2024.3382198 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Beijing Municipal Natural Science Foundation for Distinguished Young Scholars[JQ21013] ; National Natural Science Foundation of China[62322210] ; Beijing Municipal Science and Technology Commission[Z231100005923031] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001290498900037 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/39648 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Gao, Lin |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp, Pervas Device, Beijing 100045, Peoples R China 2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China 3.VAST, Campbell, CA 95008 USA 4.Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF24 4AG, Wales 5.Tencent PCG, ARC Lab, Beijing 100084, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Yi-Hua,Cao, Yan-Pei,Lai, Yu-Kun,et al. NeRF-Texture: Synthesizing Neural Radiance Field Textures[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,46(9):5986-6000. |
APA | Huang, Yi-Hua,Cao, Yan-Pei,Lai, Yu-Kun,Shan, Ying,&Gao, Lin.(2024).NeRF-Texture: Synthesizing Neural Radiance Field Textures.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,46(9),5986-6000. |
MLA | Huang, Yi-Hua,et al."NeRF-Texture: Synthesizing Neural Radiance Field Textures".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 46.9(2024):5986-6000. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论