CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations
Liu, Yajun1; Zhang, Fan1; Ding, Yulian2; Fei, Rong1; Li, Junhuai1; Wu, Fang-Xiang3
2024-09-01
发表期刊JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
ISSN1582-1838
卷号28期号:17页码:13
摘要PIWI-interacting RNAs (piRNAs) are a typical class of small non-coding RNAs, which are essential for gene regulation, genome stability and so on. Accumulating studies have revealed that piRNAs have significant potential as biomarkers and therapeutic targets for a variety of diseases. However current computational methods face the challenge in effectively capturing piRNA-disease associations (PDAs) from limited data. In this study, we propose a novel method, MRDPDA, for predicting PDAs based on limited data from multiple sources. Specifically, MRDPDA integrates a deep factorization machine (deepFM) model with regularizations derived from multiple yet limited datasets, utilizing separate Laplacians instead of a simple average similarity network. Moreover, a unified objective function to combine embedding loss about similarities is proposed to ensure that the embedding is suitable for the prediction task. In addition, a balanced benchmark dataset based on piRPheno is constructed and a deep autoencoder is applied for creating reliable negative set from the unlabeled dataset. Compared with three latest methods, MRDPDA achieves the best performance on the pirpheno dataset in terms of the five-fold cross validation test and independent test set, and case studies further demonstrate the effectiveness of MRDPDA.
关键词DeepFM Laplacian regularized piRNA piRNA-disease association
DOI10.1111/jcmm.70046
收录类别SCI
语种英语
资助项目Young Scientists Fund of the National Natural Science Foundation of China[62202374] ; Young Scientists Fund of the National Natural Science Foundation of China[U22A2041] ; Natural Science Basic Research Program of Shaanxi Province of China[2024JC-YBMS-484] ; China Postdoctoral Science Foundation[2021 M693887] ; Natural Science and Engineering Research Council of Canada (NSERC)
WOS研究方向Cell Biology ; Research & Experimental Medicine
WOS类目Cell Biology ; Medicine, Research & Experimental
WOS记录号WOS:001303587200001
出版者WILEY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39622
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wu, Fang-Xiang
作者单位1.Xian Univ Technol, Sch Comp Sci & Engn, Shaanxi Key Lab Network Comp & Secur Technol, Xian, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr High Performance Comp, Shenzhen, Peoples R China
3.Univ Saskatchewan, Dept Comp Sci Biomed Engn & Mech Engn, Saskatoon, SK, Canada
推荐引用方式
GB/T 7714
Liu, Yajun,Zhang, Fan,Ding, Yulian,et al. MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations[J]. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE,2024,28(17):13.
APA Liu, Yajun,Zhang, Fan,Ding, Yulian,Fei, Rong,Li, Junhuai,&Wu, Fang-Xiang.(2024).MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations.JOURNAL OF CELLULAR AND MOLECULAR MEDICINE,28(17),13.
MLA Liu, Yajun,et al."MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations".JOURNAL OF CELLULAR AND MOLECULAR MEDICINE 28.17(2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yajun]的文章
[Zhang, Fan]的文章
[Ding, Yulian]的文章
百度学术
百度学术中相似的文章
[Liu, Yajun]的文章
[Zhang, Fan]的文章
[Ding, Yulian]的文章
必应学术
必应学术中相似的文章
[Liu, Yajun]的文章
[Zhang, Fan]的文章
[Ding, Yulian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。