CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images
Li, Chun-Peng1,2; Dai, Weiwei3; Xiao, Yun-Peng1; Qi, Mengying4; Zhang, Ling-Xiao1; Gao, Lin1,2; Zhang, Fang-Lue7; Lai, Yu-Kun8; Liu, Chang9; Lu, Jing10; Chen, Fen4; Chen, Dan4; Shi, Shuai9; Li, Shaowei9; Zeng, Qingyan4,5,6,11; Chen, Yiqiang1,2
2024-08-08
发表期刊SCIENTIFIC REPORTS
ISSN2045-2322
卷号14期号:1页码:11
摘要Timely and effective diagnosis of fungal keratitis (FK) is necessary for suitable treatment and avoiding irreversible vision loss for patients. In vivo confocal microscopy (IVCM) has been widely adopted to guide the FK diagnosis. We present a deep learning framework for diagnosing fungal keratitis using IVCM images to assist ophthalmologists. Inspired by the real diagnostic process, our method employs a two-stage deep architecture for diagnostic predictions based on both image-level and sequence-level information. To the best of our knowledge, we collected the largest dataset with 96,632 IVCM images in total with expert labeling to train and evaluate our method. The specificity and sensitivity of our method in diagnosing FK on the unseen test set achieved 96.65% and 97.57%, comparable or better than experienced ophthalmologists. The network can provide image-level, sequence-level and patient-level diagnostic suggestions to physicians. The results show great promise for assisting ophthalmologists in FK diagnosis.
关键词Fungal keratitis Image classification Neural network Transformer
DOI10.1038/s41598-024-68768-y
收录类别SCI
语种英语
资助项目Science and Technology Service Network Initiative of the Chinese Academy of Sciences[SZYK202204] ; Aier-ICT Joint Laboratory for Digital Ophthalmology
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001294094100046
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39620
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zeng, Qingyan; Chen, Yiqiang
作者单位1.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Changsha Aier Eye Hosp, Changsha, Hunan, Peoples R China
4.Wuhan Aier Hankou Eye Hosp, Wuhan, Peoples R China
5.Wuhan Univ, Aier Eye Hosp, Wuhan, Peoples R China
6.Hubei Univ Sci & Technol, Xianning, Peoples R China
7.Victoria Univ Wellington, Wellington, New Zealand
8.Cardiff Univ, Cardiff, Wales
9.Beijing Aier Intech Eye Hosp, Beijing, Peoples R China
10.Chengdu Aier East Eye Hosp, Chengdu, Peoples R China
11.Jinan Univ, Aier Eye Hosp, Guangzhou, Peoples R China
推荐引用方式
GB/T 7714
Li, Chun-Peng,Dai, Weiwei,Xiao, Yun-Peng,et al. Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images[J]. SCIENTIFIC REPORTS,2024,14(1):11.
APA Li, Chun-Peng.,Dai, Weiwei.,Xiao, Yun-Peng.,Qi, Mengying.,Zhang, Ling-Xiao.,...&Chen, Yiqiang.(2024).Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images.SCIENTIFIC REPORTS,14(1),11.
MLA Li, Chun-Peng,et al."Two-stage deep neural network for diagnosing fungal keratitis via in vivo confocal microscopy images".SCIENTIFIC REPORTS 14.1(2024):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chun-Peng]的文章
[Dai, Weiwei]的文章
[Xiao, Yun-Peng]的文章
百度学术
百度学术中相似的文章
[Li, Chun-Peng]的文章
[Dai, Weiwei]的文章
[Xiao, Yun-Peng]的文章
必应学术
必应学术中相似的文章
[Li, Chun-Peng]的文章
[Dai, Weiwei]的文章
[Xiao, Yun-Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。