CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
IDEA: Invariant defense for graph adversarial robustness
Tao, Shuchang1,2; Cao, Qi1; Shen, Huawei1,2; Wu, Yunfan1,2; Xu, Bingbing1; Cheng, Xueqi1,2
2024-10-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号680页码:18
摘要Despite the success of graph neural networks (GNNs), their vulnerability to adversarial attacks poses tremendous challenges for practical applications. Existing defense methods suffer from severe performance decline under unseen attacks, due to either limited observed adversarial examples or pre-defined heuristics. To address these limitations, we analyze the causalities in graph adversarial attacks and conclude that causal features are key to achieve graph adversarial robustness, owing to their determinedness for labels and invariance across attacks. To learn these causal features, we innovatively propose an Invariant causal DE fense method against adversarial Attacks (IDEA). We derive node-based and structure-based invariance objectives from an information-theoretic perspective. IDEA ensures strong predictability for labels and invariant predictability across attacks, which is provably a causally invariant defense across various attacks. Extensive experiments demonstrate that IDEA attains state-of-the-art defense performance under all five attacks on all five datasets. The implementation of IDEA is available at https:// github .com /TaoShuchang /IDEA _repo.
关键词Invariant defense Adversarial robustness Causal feature Graph neural networks
DOI10.1016/j.ins.2024.121171
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2022YFB3103700] ; National Key R&D Program of China[2022YFB3103701] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0680101] ; National Natural Science Foundation of China[62102402] ; National Natural Science Foundation of China[U21B2046] ; National Natural Science Foundation of China[62272125] ; Beijing Academy of Artificial Intelligence (BAAI)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001302686700001
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39616
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Qi; Shen, Huawei
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab AI Safety, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tao, Shuchang,Cao, Qi,Shen, Huawei,et al. IDEA: Invariant defense for graph adversarial robustness[J]. INFORMATION SCIENCES,2024,680:18.
APA Tao, Shuchang,Cao, Qi,Shen, Huawei,Wu, Yunfan,Xu, Bingbing,&Cheng, Xueqi.(2024).IDEA: Invariant defense for graph adversarial robustness.INFORMATION SCIENCES,680,18.
MLA Tao, Shuchang,et al."IDEA: Invariant defense for graph adversarial robustness".INFORMATION SCIENCES 680(2024):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。