CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Task-Adaptive In-Situ ReRAM Computing for Graph Convolutional Networks
He, Yintao1,2; Li, Bing3; Wang, Ying4; Liu, Cheng1,2; Li, Huawei5; Li, Xiaowei1,2,6,7
2024-09-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号43期号:9页码:2635-2646
摘要ReRAM-based computing-in-memory (CiM) architecture has been considered a promising solution to high-efficiency neural network accelerator, by conducting in-situ matrix multiplications and eliminating the movement of neural parameters from off-chip memory to computing units. However, we observed specific features of graph convolutional network (GCN) tasks pose design challenges to implement a high-efficiency ReRAM GCN accelerator. The ultralarge input feature data in some GCN tasks incur massive data movements, the extremely sparse adjacency matrix and input feature data involve the valid computation, and the super-large adjacency matrix that exceeds available ReRAM capacity causes frequent expensive write operations. To address the above challenges, we propose TARe, a task-adaptive CiM architecture, which consists of a hybrid in-situ computing mode to support the input feature in crossbar computing, a compact mapping scheme for efficient sparse matrix computing, and a write-free mapping to eliminate write activities in the computations with the super-large adjacency matrix. Additionally, TARe is facilitated with a task adaptive selection algorithm to generate optimized design schemes for graph neural network (GNN) tasks that have various operand sizes and data sparsity. We evaluate TARe on 11 diverse GNN tasks and compare it with different design counterparts, and the results show that achieves 168.06 $\times $ speedup and 10.95 $\times $ energy consumption reduction on average over the baseline in common GCN workloads.
关键词Task analysis Sparse matrices Convolution Convolutional neural networks Design automation Neural networks Integrated circuits Graph convolutional network hardware acceleration processing-in-memory
DOI10.1109/TCAD.2024.3375251
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62090024] ; National Natural Science Foundation of China (NSFC)[62222411] ; National Natural Science Foundation of China (NSFC)[92373206] ; National Natural Science Foundation of China (NSFC)[62204164]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:001297718600006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39610
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Bing; Li, Huawei
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Dept Comp Sci, Beijing 100190, Peoples R China
3.Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100037, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, CICS, Beijing 100190, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
6.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
7.Peng Cheng Lab, Shenzhen 518066, Peoples R China
推荐引用方式
GB/T 7714
He, Yintao,Li, Bing,Wang, Ying,et al. A Task-Adaptive In-Situ ReRAM Computing for Graph Convolutional Networks[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2024,43(9):2635-2646.
APA He, Yintao,Li, Bing,Wang, Ying,Liu, Cheng,Li, Huawei,&Li, Xiaowei.(2024).A Task-Adaptive In-Situ ReRAM Computing for Graph Convolutional Networks.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,43(9),2635-2646.
MLA He, Yintao,et al."A Task-Adaptive In-Situ ReRAM Computing for Graph Convolutional Networks".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 43.9(2024):2635-2646.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Yintao]的文章
[Li, Bing]的文章
[Wang, Ying]的文章
百度学术
百度学术中相似的文章
[He, Yintao]的文章
[Li, Bing]的文章
[Wang, Ying]的文章
必应学术
必应学术中相似的文章
[He, Yintao]的文章
[Li, Bing]的文章
[Wang, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。