CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Trajectory-User Linking via Multi-Scale Graph Attention Network
Li, Yujie1,2; Sun, Tao1; Shao, Zezhi1,2; Zhen, Yiqiang3; Xu, Yongjun1,2; Wang, Fei1,2
2025-02-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号158页码:16
摘要Trajectory-User Linking (TUL) aims to link anonymous trajectories to their owners, which is considered an essential task in discovering human mobility patterns. Although existing TUL studies have shown promising results, they still have specific defects in the perception of spatio-temporal properties of trajectories, which manifested in the following three problems: missing context of the original trajectory, ignorance of spatial information, and high computational complexity. To address those issues, we revisit the characteristics of the trajectory and propose a novel model called TULMGAT (TUL via Multi-Scale Graph Attention Network) based on masked self-attention graph neural networks. Specifically, TULMGAT consists of four components: construction of check-in oriented graphs, node embedding, trajectory embedding, and trajectory user linking. Sufficient experiments on two publicly available datasets have shown that TULMGAT is the state-of-the-art model in task TUL compared to the baselines with an improvement of about 8% in accuracy and only a quarter of the fastest baseline in runtime. Furthermore, model validity experiments have verified the role of each module.
关键词Trajectory-user linking Graph neural network Trajectory classification Spatio-temporal data mining Check-in data
DOI10.1016/j.patcog.2024.110978
收录类别SCI
语种英语
资助项目NSFC, China[62372430] ; Youth Innovation Promotion Association CAS[2023112]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001309804900001
出版者ELSEVIER SCI LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39600
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.DFH Satellite Co Ltd, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Li, Yujie,Sun, Tao,Shao, Zezhi,et al. Trajectory-User Linking via Multi-Scale Graph Attention Network[J]. PATTERN RECOGNITION,2025,158:16.
APA Li, Yujie,Sun, Tao,Shao, Zezhi,Zhen, Yiqiang,Xu, Yongjun,&Wang, Fei.(2025).Trajectory-User Linking via Multi-Scale Graph Attention Network.PATTERN RECOGNITION,158,16.
MLA Li, Yujie,et al."Trajectory-User Linking via Multi-Scale Graph Attention Network".PATTERN RECOGNITION 158(2025):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yujie]的文章
[Sun, Tao]的文章
[Shao, Zezhi]的文章
百度学术
百度学术中相似的文章
[Li, Yujie]的文章
[Sun, Tao]的文章
[Shao, Zezhi]的文章
必应学术
必应学术中相似的文章
[Li, Yujie]的文章
[Sun, Tao]的文章
[Shao, Zezhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。