CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ElasticBatch: A Learning-Augmented Elastic Scheduling System for Batch Inference on MIG
Qi, Jiaxing1; Xiao, Wencong3; Li, Mingzhen2; Yang, Chaojie4; Li, Yong4; Lin, Wei3; Yang, Hailong1; Luan, Zhongzhi1; Qian, Depei1
2024-10-01
发表期刊IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
ISSN1045-9219
卷号35期号:10页码:1708-1720
摘要As deep learning (DL) technologies become ubiquitous, GPU clusters are deployed for inference tasks with consistent service level objectives (SLOs). Efficiently utilizing multiple GPUs is crucial for throughput and cost-effectiveness. This article addresses the challenges posed by dynamic input and NVIDIA MIG in scheduling DL workloads. We present ElasticBatch, a scheduling system that simplifies configuration through bucketization and employs a machine learning-based pipeline to optimize settings. Our experiments demonstrate that ElasticBatch achieves a 50% reduction in GPU instances compared to MIG disablement, increases GPU utilization by 1.4% to 6.5% over an ideal scheduler and significantly reduces profiling time. This research contributes to the discourse on efficient utilization of GPU clusters. ElasticBatch's effectiveness in mitigating challenges posed by dynamic inputs and NVIDIA MIG underscores its potential to optimize GPU cluster performance, providing tangible benefits in terms of reduced instances, increased utilization, and significant time savings in real-world deployment scenarios.
关键词Graphics processing units Dynamic scheduling Throughput Processor scheduling Pipelines Costs Quality of service MIG batch inference scheduling system machine learning
DOI10.1109/TPDS.2024.3431189
收录类别SCI
语种英语
资助项目National Key RD Program[2023YFB3001903] ; National Natural Science Foundation of China[62322201] ; National Natural Science Foundation of China[62072018] ; National Natural Science Foundation of China[U23B2020] ; National Natural Science Foundation of China[U22A2028] ; Academic Excellence Foundation of BUAA for PhD Students ; China National Postdoctoral Program for Innovative Talents[BX20240383]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001316110600001
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39584
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luan, Zhongzhi
作者单位1.Beihang Univ, Sino German Joint Software Inst, Beijing 100191, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
3.Alibaba Grp, Hangzhou 310052, Zhejiang, Peoples R China
4.Alibaba Grp, Beijing 100102, Peoples R China
推荐引用方式
GB/T 7714
Qi, Jiaxing,Xiao, Wencong,Li, Mingzhen,et al. ElasticBatch: A Learning-Augmented Elastic Scheduling System for Batch Inference on MIG[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2024,35(10):1708-1720.
APA Qi, Jiaxing.,Xiao, Wencong.,Li, Mingzhen.,Yang, Chaojie.,Li, Yong.,...&Qian, Depei.(2024).ElasticBatch: A Learning-Augmented Elastic Scheduling System for Batch Inference on MIG.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,35(10),1708-1720.
MLA Qi, Jiaxing,et al."ElasticBatch: A Learning-Augmented Elastic Scheduling System for Batch Inference on MIG".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 35.10(2024):1708-1720.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Jiaxing]的文章
[Xiao, Wencong]的文章
[Li, Mingzhen]的文章
百度学术
百度学术中相似的文章
[Qi, Jiaxing]的文章
[Xiao, Wencong]的文章
[Li, Mingzhen]的文章
必应学术
必应学术中相似的文章
[Qi, Jiaxing]的文章
[Xiao, Wencong]的文章
[Li, Mingzhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。