CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Identity-Preserving Face Swapping via Dual Surrogate Generative Models
Huang, Ziyao1; Tang, Fan1; Zhang, Yong2; Cao, Juan1; Li, Chengyu1; Tang, Sheng1; Li, Jintao1; Lee, Tong-yee3
2024-10-01
发表期刊ACM TRANSACTIONS ON GRAPHICS
ISSN0730-0301
卷号43期号:5页码:19
摘要In this study, we revisit the fundamental setting of face-swapping models and reveal that only using implicit supervision for training leads to the difficulty of advanced methods to preserve the source identity. We propose a novel reverse pseudo-input generation approach to offer supplemental data for training face-swapping models, which addresses the aforementioned issue. Unlike the traditional pseudo-label-based training strategy, we assume that arbitrary real facial images could serve as the ground-truth outputs for the face-swapping network and try to generate corresponding input < source, target> > pair data. Specifically, we involve a source-creating surrogate that alters the attributes of the real image while keeping the identity, and a target-creating surrogate intends to synthesize attribute-preserved target images with different identities. Our framework, which utilizes proxy-paired data as explicit supervision to direct the face-swapping training process, partially fulfills a credible and effective optimization direction to boost the identity-preserving capability. We design explicit and implicit adaption strategies to better approximate the explicit supervision for face swapping. Quantitative and qualitative experiments on FF++, FFHQ, and wild images show that our framework could improve the performance of various face-swapping pipelines in terms of visual fidelity and ID preserving. Furthermore, we display applications with our method on re-aging, swappable attribute customization, cross-domain, and video face swapping.
关键词Face swapping image editing digital face synthesis
DOI10.1145/3676165
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62102162] ; Beijing Science and Technology Plan Project[Z231100005923033] ; The 242 project[2023A078] ; National Science and Technology Council, Taiwan[111-2221-E-006-112-MY3]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001325874900002
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39564
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Fan
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Tencent, Shenzhen, Guangdong, Peoples R China
3.Natl Cheng Kung Univ, Tainan, Taiwan
推荐引用方式
GB/T 7714
Huang, Ziyao,Tang, Fan,Zhang, Yong,et al. Identity-Preserving Face Swapping via Dual Surrogate Generative Models[J]. ACM TRANSACTIONS ON GRAPHICS,2024,43(5):19.
APA Huang, Ziyao.,Tang, Fan.,Zhang, Yong.,Cao, Juan.,Li, Chengyu.,...&Lee, Tong-yee.(2024).Identity-Preserving Face Swapping via Dual Surrogate Generative Models.ACM TRANSACTIONS ON GRAPHICS,43(5),19.
MLA Huang, Ziyao,et al."Identity-Preserving Face Swapping via Dual Surrogate Generative Models".ACM TRANSACTIONS ON GRAPHICS 43.5(2024):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Ziyao]的文章
[Tang, Fan]的文章
[Zhang, Yong]的文章
百度学术
百度学术中相似的文章
[Huang, Ziyao]的文章
[Tang, Fan]的文章
[Zhang, Yong]的文章
必应学术
必应学术中相似的文章
[Huang, Ziyao]的文章
[Tang, Fan]的文章
[Zhang, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。