CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Ground Moving Target Detection With Adaptive Data Reconstruction and Improved Pseudo-Skeleton Decomposition
He, Xiongpeng1; Liu, Kun1; Gu, Tong1; Liao, Guisheng1; Zhu, Shengqi1; Xu, Jingwei1; Yu, Yue1; Huang, Hai1; Wang, Xingchen1; Gao, Yingjie1; Tan, Haining2; Qiu, Jibing2
2024
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号62页码:14
摘要Ground moving target detection is one of the foremost tasks for multichannel synthetic aperture radar (SAR) system. The traditional robust principal component analysis (RPCA) method is capable of separating low-rank and sparse components from mixed echo signals, and it has been widely applied in SAR ground moving target indication (GMTI). However, it suffers from sensitivity to channel mismatch, high computational complexity, and excessively high false alarm rates. To address these issues, a novel method that combines adaptive multichannel data reconstruction (DR) with improved pseudo-skeleton decomposition (IPSD) is proposed. First, the iterative weighted approach is presented to precisely reconstruct the multichannel data vector with the joint-pixel model. After that, IPSD is presented to achieve the moving target detection, in which the row and column index sets are selected using the generalized inner product (GIP) and the amplitude histogram distribution criterion. Compared to the existing algorithms, the proposed algorithm effectively addresses the challenge of improving local region coherence in multichannel image sequences. In addition, compared to previous RPCA methods, the proposed algorithm significantly reduces false alarm rates in strong clutter backgrounds while achieving higher efficiency. Simulation results and real SAR data experiments validate the effectiveness of the proposed algorithm.
关键词Clutter Object detection Sparse matrices Principal component analysis Matrix decomposition Image reconstruction Estimation Data reconstruction (DR) ground moving target indication (GMTI) joint-pixel model pseudo-skeleton decomposition (IPSD) robust principal component analysis (RPCA)
DOI10.1109/TGRS.2024.3439885
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China (NSFC)[62201408] ; National Nature Science Foundation of China (NSFC)[61931016] ; National Nature Science Foundation of China (NSFC)[61621005]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001297495600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39562
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Kun; Gu, Tong
作者单位1.Xidian Univ, Natl Key Lab Radar Signal Proc, Xian 710071, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Res Ctr Intelligent Comp Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
He, Xiongpeng,Liu, Kun,Gu, Tong,et al. Ground Moving Target Detection With Adaptive Data Reconstruction and Improved Pseudo-Skeleton Decomposition[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2024,62:14.
APA He, Xiongpeng.,Liu, Kun.,Gu, Tong.,Liao, Guisheng.,Zhu, Shengqi.,...&Qiu, Jibing.(2024).Ground Moving Target Detection With Adaptive Data Reconstruction and Improved Pseudo-Skeleton Decomposition.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62,14.
MLA He, Xiongpeng,et al."Ground Moving Target Detection With Adaptive Data Reconstruction and Improved Pseudo-Skeleton Decomposition".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Xiongpeng]的文章
[Liu, Kun]的文章
[Gu, Tong]的文章
百度学术
百度学术中相似的文章
[He, Xiongpeng]的文章
[Liu, Kun]的文章
[Gu, Tong]的文章
必应学术
必应学术中相似的文章
[He, Xiongpeng]的文章
[Liu, Kun]的文章
[Gu, Tong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。