CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Domain Invariant Features for Unsupervised Indoor Depth Estimation Adaptation
Zhang, Jiehua1; Li, Liang2; Yan, Chenggang3; Wang, Zhan4; Xu, Changliang5,6; Zhang, Jiyong3; Chen, Chuqiao7
2024-09-01
发表期刊ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
ISSN1551-6857
卷号20期号:9页码:23
摘要Predicting depth maps from monocular images has made an impressive performance in the past years. However, most depth estimation methods are trained with paired image-depth map data or multi-view images (e.g., stereo pair and monocular sequence), which suffer from expensive annotation costs and poor transferability. Although unsupervised domain adaptation methods are introduced to mitigate the reliance on annotated data, rare works focus on the unsupervised cross-scenario indoor monocular depth estimation. In this article, we propose to study the generalization of depth estimation models across different indoor scenarios in an adversarial-based domain adaptation paradigm. Concretely, a domain discriminator is designed for discriminating the representation from source and target domains, while the feature extractor aims to confuse the domain discriminator by capturing domain-invariant features. Further, we reconstruct depth maps from latent representations with the supervision of labeled source data. As a result, the feature extractor learned features possess the merit of both domain-invariant and low source risk, and the depth estimator can deal with the domain shift between source and target domains. We conduct the cross-scenario and cross-dataset experiments on the ScanNet and NYU-Depth-v2 datasets to verify the effectiveness of our method and achieve impressive performance.
关键词Indoor depth estimation unsupervised learning transfer learning domain adaptation
DOI10.1145/3672397
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001325876400003
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39556
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang; Yan, Chenggang
作者单位1.Xi An Jiao Tong Univ, Xian, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Hangzhou Dianzi Univ, Hangzhou, Peoples R China
4.Moreal Pte Ltd, Singapore, Singapore
5.State Key Lab Media Convergence Prod Technol Syst, Beijing, Peoples R China
6.Xinhua Zhiyun Technol Co Ltd, Beijing, Peoples R China
7.Hangzhou Dianzi Univ, Lishui Inst, Hangzhou, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jiehua,Li, Liang,Yan, Chenggang,et al. Learning Domain Invariant Features for Unsupervised Indoor Depth Estimation Adaptation[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2024,20(9):23.
APA Zhang, Jiehua.,Li, Liang.,Yan, Chenggang.,Wang, Zhan.,Xu, Changliang.,...&Chen, Chuqiao.(2024).Learning Domain Invariant Features for Unsupervised Indoor Depth Estimation Adaptation.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,20(9),23.
MLA Zhang, Jiehua,et al."Learning Domain Invariant Features for Unsupervised Indoor Depth Estimation Adaptation".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 20.9(2024):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiehua]的文章
[Li, Liang]的文章
[Yan, Chenggang]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiehua]的文章
[Li, Liang]的文章
[Yan, Chenggang]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiehua]的文章
[Li, Liang]的文章
[Yan, Chenggang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。