CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Mustang: Improving QoE for Real-Time Video in Cellular Networks by Masking Jitter
Yu, Encheng1,2; Zhou, Jianer2; Li, Zhenyu3; Tyson, Gareth4; Li, Weicho2; Zhang, Xinyi5; Xu, Zhiwei6; Xie, Gaogang5
2024-09-01
发表期刊ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
ISSN1551-6857
卷号20期号:9页码:23
摘要The advent of 5G and interactive live broadcasting has led to a growing trend of people preferring realtime interactive video services on mobile devices, particularly mobile phones. In this work, we measure the performance of Google congestion control (GCC) in cellular networks, which is the default congestion control algorithm for Web Real-Time Communication (WebRTC). Our measurements show that GCC sometimes makes bitrate decisions which are harmful to quality of experience (QoE) in cellular networks with high jitter. We further find that the frame delivery time (FDT) in the player can mitigate network jitter and maintain QoE. Moreover, the receiving rate is better to reflect the network congestion than RTT in cellular networks. Based on these measurements and findings, we propose Mustang, an algorithm designed to overcome the jitter in cellular networks. Mustang makes use of the FDT and receiving rate as feedback information to the sender. Then the sender adjusts its sending rate based on the information to guarantee QoE. We have implemented Mustang in WebRTC and evaluated it in both emulated and real cellular networks. The experimental results show that Mustang can improve WebRTC's QoS and QoE performance. For QoS, Mustang increases the sending rate by 72.1% and has similar RTT and packet loss when compared with GCC, while it is about 30% better for QoE.
关键词Information systems Multimedia streaming Networks Transport protocols Transport protocols
DOI10.1145/3672399
收录类别SCI
语种英语
资助项目Major Key Project of PCL[PCL2023AS1-5] ; Major Key Project of PCL[PCL2023AS1-3] ; Young Scientists Fund of the National Natural Science Foundation of China[62202447]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001325878000002
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39552
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yu, Encheng
作者单位1.Southern Univ Sci & Technol, Shenzhen, Peoples R China
2.Peng Cheng Lab, Shenzhen, Peoples R China
3.Chinese Acad Sci, ICT, Beijing, Peoples R China
4.Hong Kong Univ Sci & Technol, Guangzhou, Peoples R China
5.Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
6.Haihe Lab Informat Technol & Applicat Innovat, Tianjin, Peoples R China
推荐引用方式
GB/T 7714
Yu, Encheng,Zhou, Jianer,Li, Zhenyu,et al. Mustang: Improving QoE for Real-Time Video in Cellular Networks by Masking Jitter[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2024,20(9):23.
APA Yu, Encheng.,Zhou, Jianer.,Li, Zhenyu.,Tyson, Gareth.,Li, Weicho.,...&Xie, Gaogang.(2024).Mustang: Improving QoE for Real-Time Video in Cellular Networks by Masking Jitter.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,20(9),23.
MLA Yu, Encheng,et al."Mustang: Improving QoE for Real-Time Video in Cellular Networks by Masking Jitter".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 20.9(2024):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Encheng]的文章
[Zhou, Jianer]的文章
[Li, Zhenyu]的文章
百度学术
百度学术中相似的文章
[Yu, Encheng]的文章
[Zhou, Jianer]的文章
[Li, Zhenyu]的文章
必应学术
必应学术中相似的文章
[Yu, Encheng]的文章
[Zhou, Jianer]的文章
[Li, Zhenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。