CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ReN Human: Learning Relightable Neural Implicit Surfaces for Animatable Human Rendering
Xie, Rengan1; Huang, Kai1,2,3; Cho, In-Young4; Yang, Sen3; Chen, Wei1; Bao, Hujun1; Zheng, Wenting1; Li, Rong3; Huo, Yuchi1,3
2024-10-01
发表期刊ACM TRANSACTIONS ON GRAPHICS
ISSN0730-0301
卷号43期号:5页码:22
摘要Recently, implicit neural representation has been widely used to learn the appearance of human bodies in the canonical space, which can be further animated using a parametric human model. However, how to decompose the material properties from the implicit representation for relighting has not yet been investigated thoroughly. We propose to address this problem with a novel framework, ReN Human, that takes sparse or even monocular input videos collected in unconstrained lighting to produce a 3D human representation that can be rendered with novel views, poses, and lighting. Our method represents humans as deformable implicit neural representation and decomposes the geometry, material of humans as well as environment illumination for capturing a relightable and animatable human model. Moreover, we introduce a volumetric lighting grid consisting of spherical Gaussian mixtures to learn the spatially varying illumination and animatable visibility probes to model the dynamic self-occlusion caused by human motion. Specifically, we learn the material property fields and illumination using a physically-based rendering layer that uses Monte Carlo importance sampling to facilitate differentiation of the complex rendering integral. We demonstrate that our approach outperforms recent novel views and poses synthesis methods in a challenging benchmark with sparse videos, enabling high-fidelity human relighting.
关键词Relighting sign distance function animatable human inverse rendering volume rendering
DOI10.1145/3678002
收录类别SCI
语种英语
资助项目NSFC[62441205] ; Zhejiang Province Jianbing Research and Development Project[2023C01042] ; National Natural Science Foundation of China[U22B2034] ; National Key R&D Program of China[2024YDLN0011] ; Information Technology Center ; State Key Lab of CAD&CG, Zhejiang University
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001326849100001
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39550
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xie, Rengan
作者单位1.Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Zhejiang Lab, Hangzhou, Peoples R China
4.KRAFTON, Seoul, South Korea
推荐引用方式
GB/T 7714
Xie, Rengan,Huang, Kai,Cho, In-Young,et al. ReN Human: Learning Relightable Neural Implicit Surfaces for Animatable Human Rendering[J]. ACM TRANSACTIONS ON GRAPHICS,2024,43(5):22.
APA Xie, Rengan.,Huang, Kai.,Cho, In-Young.,Yang, Sen.,Chen, Wei.,...&Huo, Yuchi.(2024).ReN Human: Learning Relightable Neural Implicit Surfaces for Animatable Human Rendering.ACM TRANSACTIONS ON GRAPHICS,43(5),22.
MLA Xie, Rengan,et al."ReN Human: Learning Relightable Neural Implicit Surfaces for Animatable Human Rendering".ACM TRANSACTIONS ON GRAPHICS 43.5(2024):22.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Rengan]的文章
[Huang, Kai]的文章
[Cho, In-Young]的文章
百度学术
百度学术中相似的文章
[Xie, Rengan]的文章
[Huang, Kai]的文章
[Cho, In-Young]的文章
必应学术
必应学术中相似的文章
[Xie, Rengan]的文章
[Huang, Kai]的文章
[Cho, In-Young]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。