CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Attention-Guided Sample-Based Feature Enhancement Network for Crowded Pedestrian Detection Using Vision Sensors
Tang, Shuyuan1,2,3,4; Zhou, Yiqing1,2,3,4; Li, Jintao1,2,3,4; Liu, Chang1,2,4; Shi, Jinglin1,2,3,4
2024-10-01
发表期刊SENSORS
卷号24期号:19页码:21
摘要Occlusion presents a major obstacle in the development of pedestrian detection technologies utilizing computer vision. This challenge includes both inter-class occlusion caused by environmental objects obscuring pedestrians, and intra-class occlusion resulting from interactions between pedestrians. In complex and variable urban settings, these compounded occlusion patterns critically limit the efficacy of both one-stage and two-stage pedestrian detectors, leading to suboptimal detection performance. To address this, we introduce a novel architecture termed the Attention-Guided Feature Enhancement Network (AGFEN), designed within the deep convolutional neural network framework. AGFEN improves the semantic information of high-level features by mapping it onto low-level feature details through sampling, creating an effect comparable to mask modulation. This technique enhances both channel-level and spatial-level features concurrently without incurring additional annotation costs. Furthermore, we transition from a traditional one-to-one correspondence between proposals and predictions to a one-to-multiple paradigm, facilitating non-maximum suppression using the prediction set as the fundamental unit. Additionally, we integrate these methodologies by aggregating local features between regions of interest (RoI) through the reuse of classification weights, effectively mitigating false positives. Our experimental evaluations on three widely used datasets demonstrate that AGFEN achieves a 2.38% improvement over the baseline detector on the CrowdHuman dataset, underscoring its effectiveness and potential for advancing pedestrian detection technologies.
关键词pedestrian detection computer vision attention-guided feature enhancement convolutional neural network
DOI10.3390/s24196350
收录类别SCI
语种英语
资助项目National Key Research and Development Plan ; [2022YFC3320801-2]
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:001332816800001
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39532
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Shuyuan
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Tang, Shuyuan,Zhou, Yiqing,Li, Jintao,et al. Attention-Guided Sample-Based Feature Enhancement Network for Crowded Pedestrian Detection Using Vision Sensors[J]. SENSORS,2024,24(19):21.
APA Tang, Shuyuan,Zhou, Yiqing,Li, Jintao,Liu, Chang,&Shi, Jinglin.(2024).Attention-Guided Sample-Based Feature Enhancement Network for Crowded Pedestrian Detection Using Vision Sensors.SENSORS,24(19),21.
MLA Tang, Shuyuan,et al."Attention-Guided Sample-Based Feature Enhancement Network for Crowded Pedestrian Detection Using Vision Sensors".SENSORS 24.19(2024):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, Shuyuan]的文章
[Zhou, Yiqing]的文章
[Li, Jintao]的文章
百度学术
百度学术中相似的文章
[Tang, Shuyuan]的文章
[Zhou, Yiqing]的文章
[Li, Jintao]的文章
必应学术
必应学术中相似的文章
[Tang, Shuyuan]的文章
[Zhou, Yiqing]的文章
[Li, Jintao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。