CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Lightweight Deep Human Activity Recognition Algorithm Using Multiknowledge Distillation
Chen, Runze1; Luo, Haiyong2; Zhao, Fang1; Meng, Xuechun1; Xie, Zhiqing1; Zhu, Yida3
2024-10-01
发表期刊IEEE SENSORS JOURNAL
ISSN1530-437X
卷号24期号:19页码:31495-31511
摘要Human activity recognition (HAR) is crucial in fields such as human-computer interaction, motion estimation, and intelligent transportation. Yet, attaining high accuracy in HAR, especially in scenarios limited by computing resources, poses a considerable challenge. This article presents Stage-Memory-Logits Distillation (SMLDist), a framework designed to build highly customizable HAR models that achieve optimal performance under various resource constraints. SMLDist prioritizes frequency-related features in its distillation process to bolster HAR classification robustness. We also introduce an auto-search mechanism within heterogeneous classifiers to boost the performance further. Our evaluation addresses the challenges of generalizing across users, sensor placements, and recognizing a wide array of activity modes. Models crafted with SMLDist, leveraging a teacher-based approach that achieves a 40%-50% reduction in operational expenditure, surpass the performance of existing state-of-the-art architectures. When assessing computational costs and energy consumption on the Jetson Xavier AGX platform, SMLDist-based models show strong economic and environmental sustainability advantages. Our results indicate that SMLDist effectively alleviates the performance degradation typically associated with limited computational resources, underscoring its significant theoretical and practical contributions to the field of HAR.
关键词Human activity recognition Computational modeling Sensors Feature extraction Training Task analysis Deep learning Artificial neural network human activity recognition (HAR) multiknowledge distillation
DOI10.1109/JSEN.2024.3443308
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDA28040500] ; National Natural Science Foundation of China[62261042] ; Key Research Projects of the Joint Research Fund for Beijing Natural Science Foundation and Fengtai Rail Transit Frontier Research Joint Fund[L221003] ; Beijing Natural Science Foundation[4232035] ; Beijing Natural Science Foundation[4222034]
WOS研究方向Engineering ; Instruments & Instrumentation ; Physics
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Physics, Applied
WOS记录号WOS:001329294500030
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39480
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luo, Haiyong; Zhao, Fang
作者单位1.Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Res Ctr Ubiquitous Comp Syst, Beijing 100190, Peoples R China
3.Meituan, Chaoyang 100102, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Chen, Runze,Luo, Haiyong,Zhao, Fang,et al. A Lightweight Deep Human Activity Recognition Algorithm Using Multiknowledge Distillation[J]. IEEE SENSORS JOURNAL,2024,24(19):31495-31511.
APA Chen, Runze,Luo, Haiyong,Zhao, Fang,Meng, Xuechun,Xie, Zhiqing,&Zhu, Yida.(2024).A Lightweight Deep Human Activity Recognition Algorithm Using Multiknowledge Distillation.IEEE SENSORS JOURNAL,24(19),31495-31511.
MLA Chen, Runze,et al."A Lightweight Deep Human Activity Recognition Algorithm Using Multiknowledge Distillation".IEEE SENSORS JOURNAL 24.19(2024):31495-31511.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Runze]的文章
[Luo, Haiyong]的文章
[Zhao, Fang]的文章
百度学术
百度学术中相似的文章
[Chen, Runze]的文章
[Luo, Haiyong]的文章
[Zhao, Fang]的文章
必应学术
必应学术中相似的文章
[Chen, Runze]的文章
[Luo, Haiyong]的文章
[Zhao, Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。