CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection
Yu, Zhipeng1; Xu, Qianqian2; Jiang, Yangbangyan3; Sun, Yingfei1; Huang, Qingming2,3
2024
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号33页码:6083-6097
摘要The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains under-explored. Existing noisy label learning methods designed for DML mainly discard suspicious noisy samples, resulting in a waste of the training data. To address this issue, we propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS), which constructs reliable positive pairs for noisy samples to enhance the sample utilization. Specifically, SGPS first effectively identifies clean and noisy samples by a probability-based clean sample selectionstrategy. To further utilize the remaining noisy samples, we discover their potential similar samples based on the subgroup information given by a subgroup generation module and then aggregate them into informative positive prototypes for each noisy sample via a positive prototype generation module. Afterward, a new contrastive loss is tailored for the noisy samples with their selected positive pairs. SGPS can be easily integrated into the training process of existing pair-wise DML tasks, like image retrieval and face recognition. Extensive experiments on multiple synthetic and real-world large-scale label noise datasets demonstrate the effectiveness of our proposed method. Without any bells and whistles, our SGPS framework outperforms the state-of-the-art noisy label DML methods.
关键词Metric learning noisy label deep learning deep learning pair- wise loss pair- wise loss pair- wise loss pair- wise loss positive-pair selection positive-pair selection
DOI10.1109/TIP.2024.3482182
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018AAA0102000] ; National Natural Science Foundation of China[62236008] ; National Natural Science Foundation of China[U23B2051] ; National Natural Science Foundation of China[61931008] ; National Natural Science Foundation of China[62122075] ; National Natural Science Foundation of China[62406305] ; National Natural Science Foundation of China[62471013] ; National Natural Science Foundation of China[62476068] ; National Natural Science Foundation of China[62272439] ; Youth Innovation Promotion Association CAS ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0680000] ; Innovation Funding of Institute of Computing Technology (ICT), CAS[E000000] ; China Postdoctoral Science Foundation (CPSF)[2023M743441] ; Postdoctoral Fellowship Program of CPSF[GZB20230732]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001342519900005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39460
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Yangbangyan; Sun, Yingfei
作者单位1.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Yu, Zhipeng,Xu, Qianqian,Jiang, Yangbangyan,et al. Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2024,33:6083-6097.
APA Yu, Zhipeng,Xu, Qianqian,Jiang, Yangbangyan,Sun, Yingfei,&Huang, Qingming.(2024).Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection.IEEE TRANSACTIONS ON IMAGE PROCESSING,33,6083-6097.
MLA Yu, Zhipeng,et al."Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection".IEEE TRANSACTIONS ON IMAGE PROCESSING 33(2024):6083-6097.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Zhipeng]的文章
[Xu, Qianqian]的文章
[Jiang, Yangbangyan]的文章
百度学术
百度学术中相似的文章
[Yu, Zhipeng]的文章
[Xu, Qianqian]的文章
[Jiang, Yangbangyan]的文章
必应学术
必应学术中相似的文章
[Yu, Zhipeng]的文章
[Xu, Qianqian]的文章
[Jiang, Yangbangyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。