Institute of Computing Technology, Chinese Academy IR
Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things | |
Xu, Jianpeng1; Xu, Aoshuo1; Chen, Liangyu2; Chen, Yali3; Liang, Xiaolin1; Ai, Bo4,5,6,7 | |
2024-02-01 | |
发表期刊 | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
![]() |
ISSN | 1551-3203 |
卷号 | 20期号:2页码:2455-2464 |
摘要 | Mobile edge computing (MEC) has been regarded as a promising paradigm to support the compute-intensive and delay-sensitive industrial Internet of things (IIoT) applications. However, the nature of broadcasting in wireless communications may cause that the task offloading security is easy to be threatened from eavesdroppers. Aiming at improving the task offloading security, this article studies the benefit of deploying the emerging reconfigurable intelligent surface (RIS) in MEC-enabled IIoT networks with eavesdroppers, and forms the RIS-aided secure MEC system with time-division multiple access. In addition, we formulate a joint RIS phase shift, power control, local computation rate, and time-slot allocation optimization problem to maximize the weighted sum secrecy computation efficiency (WSSCE) among IIoT devices. To address this intractable problem, we propose a deep reinforcement learning (DRL)-based algorithm, where a deep deterministic policy gradient (DDPG) agent is adopted. Numerical results demonstrate that 1) deploying the RIS can improve the WSSCE performance; 2) the proposed DDPG-based algorithm can obtain higher WSSCE than other baseline methods. |
关键词 | Industrial Internet of Things Resource management Task analysis Wireless communication Power control Energy consumption Mathematical models Deep reinforcement learning (DRL) industrial Internet of things (IIoT) mobile edge computing (MEC) reconfigurable intelligent surface (RIS) secure offloading |
DOI | 10.1109/TII.2023.3292968 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | High-Level Talents Research Start-Up Project of Hebei University |
WOS研究方向 | Automation & Control Systems ; Computer Science ; Engineering |
WOS类目 | Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial |
WOS记录号 | WOS:001171888600173 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/39013 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Xu, Jianpeng; Ai, Bo |
作者单位 | 1.Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China 2.Huawei Technol, Beijing 100095, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China 4.Beijing Jiaotong Univ, Sch Elect & Informat Engn, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China 5.Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China 6.Peng Cheng Lab, Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China 7.Zhengzhou Univ, Henan Joint Int Res Lab Intelligent Networking & D, Zhengzhou, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Jianpeng,Xu, Aoshuo,Chen, Liangyu,et al. Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024,20(2):2455-2464. |
APA | Xu, Jianpeng,Xu, Aoshuo,Chen, Liangyu,Chen, Yali,Liang, Xiaolin,&Ai, Bo.(2024).Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,20(2),2455-2464. |
MLA | Xu, Jianpeng,et al."Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 20.2(2024):2455-2464. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论