CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things
Xu, Jianpeng1; Xu, Aoshuo1; Chen, Liangyu2; Chen, Yali3; Liang, Xiaolin1; Ai, Bo4,5,6,7
2024-02-01
发表期刊IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
ISSN1551-3203
卷号20期号:2页码:2455-2464
摘要Mobile edge computing (MEC) has been regarded as a promising paradigm to support the compute-intensive and delay-sensitive industrial Internet of things (IIoT) applications. However, the nature of broadcasting in wireless communications may cause that the task offloading security is easy to be threatened from eavesdroppers. Aiming at improving the task offloading security, this article studies the benefit of deploying the emerging reconfigurable intelligent surface (RIS) in MEC-enabled IIoT networks with eavesdroppers, and forms the RIS-aided secure MEC system with time-division multiple access. In addition, we formulate a joint RIS phase shift, power control, local computation rate, and time-slot allocation optimization problem to maximize the weighted sum secrecy computation efficiency (WSSCE) among IIoT devices. To address this intractable problem, we propose a deep reinforcement learning (DRL)-based algorithm, where a deep deterministic policy gradient (DDPG) agent is adopted. Numerical results demonstrate that 1) deploying the RIS can improve the WSSCE performance; 2) the proposed DDPG-based algorithm can obtain higher WSSCE than other baseline methods.
关键词Industrial Internet of Things Resource management Task analysis Wireless communication Power control Energy consumption Mathematical models Deep reinforcement learning (DRL) industrial Internet of things (IIoT) mobile edge computing (MEC) reconfigurable intelligent surface (RIS) secure offloading
DOI10.1109/TII.2023.3292968
收录类别SCI
语种英语
资助项目High-Level Talents Research Start-Up Project of Hebei University
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
WOS类目Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS记录号WOS:001171888600173
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39013
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Jianpeng; Ai, Bo
作者单位1.Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
2.Huawei Technol, Beijing 100095, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
4.Beijing Jiaotong Univ, Sch Elect & Informat Engn, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
5.Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
6.Peng Cheng Lab, Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China
7.Zhengzhou Univ, Henan Joint Int Res Lab Intelligent Networking & D, Zhengzhou, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jianpeng,Xu, Aoshuo,Chen, Liangyu,et al. Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024,20(2):2455-2464.
APA Xu, Jianpeng,Xu, Aoshuo,Chen, Liangyu,Chen, Yali,Liang, Xiaolin,&Ai, Bo.(2024).Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,20(2),2455-2464.
MLA Xu, Jianpeng,et al."Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 20.2(2024):2455-2464.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jianpeng]的文章
[Xu, Aoshuo]的文章
[Chen, Liangyu]的文章
百度学术
百度学术中相似的文章
[Xu, Jianpeng]的文章
[Xu, Aoshuo]的文章
[Chen, Liangyu]的文章
必应学术
必应学术中相似的文章
[Xu, Jianpeng]的文章
[Xu, Aoshuo]的文章
[Chen, Liangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。