CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Infant cry classification using an efficient graph structure and attention-based model
Qiao, Xuesong1; Jiao, Siwen2; Li, Han1; Liu, Gengyuan1; Gao, Xuan1; Li, Zhanshan1
2024-07-01
发表期刊KUWAIT JOURNAL OF SCIENCE
ISSN2307-4108
卷号51期号:3页码:9
摘要Crying serves as the primary means through which infants communicate, presenting a significant challenge for new parents in understanding its underlying causes. This study aims to classify infant cries to ascertain the reasons behind their distress. In this paper, an efficient graph structure based on multi -dimensional hybrid features is proposed. Firstly, infant cries are processed to extract various speech features, such as spectrogram, mel-scaled spectrogram, MFCC, and others. These speech features are then combined across multiple dimensions to better utilize the information in the cries. Additionally, in order to better classify the efficient graph structure, a local -to -global convolutional neural network (AlgNet) based on convolutional neural networks and attention mechanisms is proposed. The experimental results demonstrate that the use of the efficient graph structure improved the accuracy by an average of 8.01% compared to using standalone speech features, and the AlgNet model achieved an average accuracy improvement of 5.62% compared to traditional deep learning models. Experiments were conducted using the Dunstan baby language, Donate a cry, and baby cry datasets with accuracy rates of 87.78%, 93.83%, and 93.14% respectively.
关键词Neural network Multi-head attention Infant cry Audio classification
DOI10.1016/j.kjs.2024.100221
收录类别SCI
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001218519000001
出版者ELSEVIER
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38989
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Zhanshan
作者单位1.Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
2.Inst Comp Technol, Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Xuesong,Jiao, Siwen,Li, Han,et al. Infant cry classification using an efficient graph structure and attention-based model[J]. KUWAIT JOURNAL OF SCIENCE,2024,51(3):9.
APA Qiao, Xuesong,Jiao, Siwen,Li, Han,Liu, Gengyuan,Gao, Xuan,&Li, Zhanshan.(2024).Infant cry classification using an efficient graph structure and attention-based model.KUWAIT JOURNAL OF SCIENCE,51(3),9.
MLA Qiao, Xuesong,et al."Infant cry classification using an efficient graph structure and attention-based model".KUWAIT JOURNAL OF SCIENCE 51.3(2024):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, Xuesong]的文章
[Jiao, Siwen]的文章
[Li, Han]的文章
百度学术
百度学术中相似的文章
[Qiao, Xuesong]的文章
[Jiao, Siwen]的文章
[Li, Han]的文章
必应学术
必应学术中相似的文章
[Qiao, Xuesong]的文章
[Jiao, Siwen]的文章
[Li, Han]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。