CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Introspective GAN: Learning to grow a GAN for incremental generation and classification
He, Chen1; Wang, Ruiping1; Shan, Shiguang1; Chen, Xilin1
2024-07-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号151页码:12
摘要Lifelong learning, the ability to continually learn new concepts throughout our life, is a hallmark of human intelligence. Generally, humans learn a new concept by knowing what it looks like and what makes it different from the others , which are correlated. Those two ways can be characterized by generation and classification in machine learning respectively. In this paper, we carefully design a dynamically growing GAN called Introspective GAN (IntroGAN) that can perform incremental generation and classification simultaneously with the guidance of prototypes, inspired by their roles of efficient information organization in human visual learning and excellent performance in other fields like zero-shot/few-shot/incremental learning. Specifically, we incorporate prototype-based classification which is robust to feature change in incremental learning and GAN as a generative memory to alleviate forgetting into a unified end -to -end framework. A comprehensive benchmark on the joint incremental generation and classification task is proposed and our method demonstrates promising results. Additionally, we conduct comprehensive analyses over the properties of IntroGAN and verify that generation and classification can be mutually beneficial in incremental scenarios, which is an inspiring area to be further exploited. The code is available at https://github.com/TonyPod/ IntroGAN.
关键词Incremental learning Catastrophic forgetting Generative Adversarial Networks
DOI10.1016/j.patcog.2024.110383
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2021ZD0111901] ; Natural Science Foundation of China[U21B2025] ; Natural Science Foundation of China[U19B2036]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001221726400001
出版者ELSEVIER SCI LTD
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38987
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ruiping
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, CAS, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
He, Chen,Wang, Ruiping,Shan, Shiguang,et al. Introspective GAN: Learning to grow a GAN for incremental generation and classification[J]. PATTERN RECOGNITION,2024,151:12.
APA He, Chen,Wang, Ruiping,Shan, Shiguang,&Chen, Xilin.(2024).Introspective GAN: Learning to grow a GAN for incremental generation and classification.PATTERN RECOGNITION,151,12.
MLA He, Chen,et al."Introspective GAN: Learning to grow a GAN for incremental generation and classification".PATTERN RECOGNITION 151(2024):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Chen]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[He, Chen]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[He, Chen]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。