CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
TransSurv: Transformer-Based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer
Lv, Zhilong1,2; Lin, Yuexiao3; Yan, Rui1,2; Wang, Ying4; Zhang, Fa1
2023-11-01
发表期刊IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
ISSN1545-5963
卷号20期号:6页码:3411-3420
摘要Survival analysis is a significant study in cancer prognosis, and the multi-modal data, including histopathological images, genomic data, and clinical information, provides unprecedented opportunities for its development. However, because of the high dimensionality and the heterogeneity of histopathological images and genomic data, acquiring effective predictive characters from these multi-modal data has always been a challenge for survival analysis. In this article, we propose a transformer-based survival analysis model (TransSurv) for colorectal cancer that can effectively integrate intra-modality and inter-modality features of histopathological images, genomic data, and clinical information. Specifically, to integrate the intra-modality relationship of image patches, we develop a multi-scale histopathological features fusion transformer (MS-Trans). Furthermore, we provide a cross-modal fusion transformer based on cross attention for multi-scale pathological representation and multi-omics representation, which includes RNA-seq expression and copy number alteration (CNA). At the output layer of the TransSurv, we adopt the Cox layer to integrate multi-modal fusion representation with clinical information for end-to-end survival analysis. The experimental results on the Cancer Genome Atlas (TCGA) colorectal cancer cohort demonstrate that the proposed TransSurv outperforms the existing methods and improves the prognosis prediction of colorectal cancer.
关键词Cancer Genomics Bioinformatics Transformers Tumors Feature extraction Prognostics and health management Survival analysis multi-modal learning transformer histopathological slides genomic data
DOI10.1109/TCBB.2022.3199244
收录类别SCI
语种英语
资助项目Chinese Academy of Sciences
WOS研究方向Biochemistry & Molecular Biology ; Computer Science ; Mathematics
WOS类目Biochemical Research Methods ; Computer Science, Interdisciplinary Applications ; Mathematics, Interdisciplinary Applications ; Statistics & Probability
WOS记录号WOS:001133540000008
出版者IEEE COMPUTER SOC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38867
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ying; Zhang, Fa
作者单位1.Chinese Acad Sci, Inst Comp Technol, High Performance Comp Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
3.Capital Med Univ, Beijing Chaoyang Hosp, Dept Gen Surg, Beijing 100020, Peoples R China
4.Capital Med Univ, Beijing Chaoyang Hosp, Dept Pathol, Beijing 100020, Peoples R China
推荐引用方式
GB/T 7714
Lv, Zhilong,Lin, Yuexiao,Yan, Rui,et al. TransSurv: Transformer-Based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer[J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,2023,20(6):3411-3420.
APA Lv, Zhilong,Lin, Yuexiao,Yan, Rui,Wang, Ying,&Zhang, Fa.(2023).TransSurv: Transformer-Based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer.IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,20(6),3411-3420.
MLA Lv, Zhilong,et al."TransSurv: Transformer-Based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer".IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 20.6(2023):3411-3420.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lv, Zhilong]的文章
[Lin, Yuexiao]的文章
[Yan, Rui]的文章
百度学术
百度学术中相似的文章
[Lv, Zhilong]的文章
[Lin, Yuexiao]的文章
[Yan, Rui]的文章
必应学术
必应学术中相似的文章
[Lv, Zhilong]的文章
[Lin, Yuexiao]的文章
[Yan, Rui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。