CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DiffStyler: Controllable Dual Diffusion for Text-Driven Image Stylization
Huang, Nisha1,2; Zhang, Yuxin1,2; Tang, Fan3; Ma, Chongyang4; Huang, Haibin2; Dong, Weiming1,2; Xu, Changsheng1,2
2024-01-10
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码14
摘要Despite the impressive results of arbitrary image-guided style transfer methods, text-driven image stylization has recently been proposed for transferring a natural image into a stylized one according to textual descriptions of the target style provided by the user. Unlike the previous image-to-image transfer approaches, text-guided stylization progress provides users with a more precise and intuitive way to express the desired style. However, the huge discrepancy between cross-modal inputs/outputs makes it challenging to conduct text-driven image stylization in a typical feed-forward CNN pipeline. In this article, we present DiffStyler, a dual diffusion processing architecture to control the balance between the content and style of the diffused results. The cross-modal style information can be easily integrated as guidance during the diffusion process step-by-step. Furthermore, we propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image. We validate the proposed DiffStyler beyond the baseline methods through extensive qualitative and quantitative experiments. The code is available at https://github.com/haha-lisa/Diffstyler.
关键词Arbitrary image stylization diffusion textual guidance neural network applications
DOI10.1109/TNNLS.2023.3342645
收录类别SCI
语种英语
资助项目National Science Foundation of China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001173965600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38847
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Dong, Weiming
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Kuaishou Technol, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Huang, Nisha,Zhang, Yuxin,Tang, Fan,et al. DiffStyler: Controllable Dual Diffusion for Text-Driven Image Stylization[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2024:14.
APA Huang, Nisha.,Zhang, Yuxin.,Tang, Fan.,Ma, Chongyang.,Huang, Haibin.,...&Xu, Changsheng.(2024).DiffStyler: Controllable Dual Diffusion for Text-Driven Image Stylization.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,14.
MLA Huang, Nisha,et al."DiffStyler: Controllable Dual Diffusion for Text-Driven Image Stylization".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Nisha]的文章
[Zhang, Yuxin]的文章
[Tang, Fan]的文章
百度学术
百度学术中相似的文章
[Huang, Nisha]的文章
[Zhang, Yuxin]的文章
[Tang, Fan]的文章
必应学术
必应学术中相似的文章
[Huang, Nisha]的文章
[Zhang, Yuxin]的文章
[Tang, Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。