CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Hierarchical compositional representations for few-shot action recognition
Li, Changzhen1,2,3; Zhang, Jie1,2; Wu, Shuzhe4; Jin, Xin4; Shan, Shiguang1,2,3
2024-03-01
发表期刊COMPUTER VISION AND IMAGE UNDERSTANDING
ISSN1077-3142
卷号240页码:11
摘要Recently action recognition has received more and more attention for its comprehensive and practical applications in intelligent surveillance and human-computer interaction. However, few-shot action recognition has not been well explored and remains challenging because of data scarcity. In this paper, we propose a novel hierarchical compositional representations (HCR) learning approach for few-shot action recognition. Specifically, we divide a complicated action into several sub-actions by carefully designed hierarchical clustering and further decompose the sub-actions into more fine-grained spatially attentional sub-actions (SASactions). Although there exist large differences between base classes and novel classes, they can share similar patterns in sub-actions or SAS-actions. Furthermore, we adopt the Earth Mover's Distance in the transportation problem to measure the similarity between video samples in terms of sub-action representations. It computes the optimal matching flows between sub-actions as distance metric, which is favorable for comparing finegrained patterns. Extensive experiments show our method achieves the state-of-the-art results on HMDB51, UCF101 and Kinetics datasets.
关键词Action recognition Few-shot learning Hierarchical compositional representations Body parts EMD distance
DOI10.1016/j.cviu.2023.103911
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2021YFC3310100] ; National Natural Science Foundation of China[62176251] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001166488900001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38843
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Jie
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.UCAS, Hangzhou Inst Adv Study, Sch Intelligent Sci & Technol, Hangzhou, Peoples R China
4.Beijing Huawei Cloud Comp Technol Co Ltd, 3 Xinxi Rd, Beijing 100095, Peoples R China
推荐引用方式
GB/T 7714
Li, Changzhen,Zhang, Jie,Wu, Shuzhe,et al. Hierarchical compositional representations for few-shot action recognition[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2024,240:11.
APA Li, Changzhen,Zhang, Jie,Wu, Shuzhe,Jin, Xin,&Shan, Shiguang.(2024).Hierarchical compositional representations for few-shot action recognition.COMPUTER VISION AND IMAGE UNDERSTANDING,240,11.
MLA Li, Changzhen,et al."Hierarchical compositional representations for few-shot action recognition".COMPUTER VISION AND IMAGE UNDERSTANDING 240(2024):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Changzhen]的文章
[Zhang, Jie]的文章
[Wu, Shuzhe]的文章
百度学术
百度学术中相似的文章
[Li, Changzhen]的文章
[Zhang, Jie]的文章
[Wu, Shuzhe]的文章
必应学术
必应学术中相似的文章
[Li, Changzhen]的文章
[Zhang, Jie]的文章
[Wu, Shuzhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。