CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms
Huang, Bin1,2; Kong, Lupeng1,3; Wang, Chao1; Ju, Fusong4; Zhang, Qi5; Zhu, Jianwei4; Gong, Tiansu1,2; Zhang, Haicang1,2,6; Yu, Chungong1,2,6; Zheng, Wei-Mou7; Bu, Dongbo1,2,6
2023-10-01
发表期刊GENOMICS PROTEOMICS & BIOINFORMATICS
ISSN1672-0229
卷号21期号:5页码:913-925
摘要Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields, including biochemistry, medicine, physics, mathematics, and computer science. These researchers adopt various research paradigms to attack the same structure prediction problem: biochemists and physicists attempt to reveal the principles governing protein folding; mathematicians, especially statisticians, usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure, while computer scientists formulate protein structure prediction as an optimization problem - finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure. These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman, namely, data modeling and algorithmic modeling. Recently, we have also witnessed the great success of deep learning in protein structure prediction. In this review, we present a survey of the efforts for protein structure prediction. We compare the research paradigms adopted by researchers from different fields, with an emphasis on the shift of research paradigms in the era of deep learning. In short, the algorithmic modeling techniques, especially deep neural networks, have considerably improved the accuracy of protein structure prediction; however, theories interpreting the neural networks and knowledge on protein folding are still highly desired.
关键词Protein folding Protein structure prediction Deep learning Transformer Language model
DOI10.1016/j.gpb.2022.11.014
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2020YFA0907000] ; National Natural Science Foundation of China[32271297] ; National Natural Science Foundation of China[62072435] ; National Natural Science Foundation of China[31770775] ; National Natural Science Foundation of China[31671369]
WOS研究方向Genetics & Heredity
WOS类目Genetics & Heredity
WOS记录号WOS:001186312300001
出版者ELSEVIER
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38819
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Haicang; Yu, Chungong; Zheng, Wei-Mou; Bu, Dongbo
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Changping Lab, Beijing 102206, Peoples R China
4.Microsoft Res AI4Sci, Beijing 100080, Peoples R China
5.Huawei Noahs Ark Lab, Wuhan 430206, Peoples R China
6.Zhongke Big Data Acad, Zhengzhou 450046, Peoples R China
7.Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Huang, Bin,Kong, Lupeng,Wang, Chao,et al. Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms[J]. GENOMICS PROTEOMICS & BIOINFORMATICS,2023,21(5):913-925.
APA Huang, Bin.,Kong, Lupeng.,Wang, Chao.,Ju, Fusong.,Zhang, Qi.,...&Bu, Dongbo.(2023).Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms.GENOMICS PROTEOMICS & BIOINFORMATICS,21(5),913-925.
MLA Huang, Bin,et al."Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms".GENOMICS PROTEOMICS & BIOINFORMATICS 21.5(2023):913-925.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Bin]的文章
[Kong, Lupeng]的文章
[Wang, Chao]的文章
百度学术
百度学术中相似的文章
[Huang, Bin]的文章
[Kong, Lupeng]的文章
[Wang, Chao]的文章
必应学术
必应学术中相似的文章
[Huang, Bin]的文章
[Kong, Lupeng]的文章
[Wang, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。