Institute of Computing Technology, Chinese Academy IR
T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction | |
Wu, Fan1; Wei, Liangrui1; Luo, Haiyong2; Zhao, Fang1; Ma, Xin1; Ning, Bokun1 | |
2024-02-29 | |
发表期刊 | INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS |
ISSN | 0884-8173 |
卷号 | 2024页码:15 |
摘要 | GNSS (global navigation satellite systems) technology enables high-precision single-point positioning (SPP) in open environments. However, the accuracy of GNSS positioning is significantly compromised in complex urban canyons due to signal obstructions and non-line-of-sight propagation errors. To address this challenge, we propose a GNSS displacement estimation algorithm. This method learns nonlinear dependencies between GNSS raw measurements and corresponding position changes, capturing dynamic and layered features in GNSS measurement data for displacement estimation. We introduce a denoising auto-encoder (DAE) to preprocess raw GNSS observations, reducing the impact of noise. The model simultaneously outputs estimated displacement and model confidence. The fusion process dynamically combines positioning results from the SPP algorithm and the D-Tran model, adaptively blending them to achieve accurate and optimal positioning estimation. This approach optimizes the accuracy of estimated positioning results while maintaining confidence in the estimation. Experimental results show a 61% reduction in root mean square error (RMSE) and 100% availability in urban canyon environments compared to traditional single-point positioning techniques. |
DOI | 10.1155/2024/6643723 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Basic Research Program of China (973 Program)[2022YFB3904700] ; National Key Research and Development Program[62261042] ; National Key Research and Development Program[62002026] ; National Natural Science Foundation of China ; Key Research Projects of the Joint Research Fund for Beijing Natural Science Foundation[L221003] ; Fengtai Rail Transit Frontier Research Joint Fund[4212024] ; Fengtai Rail Transit Frontier Research Joint Fund[4222034] ; Beijing Natural Science Foundation[XDA28040500] ; Strategic Priority Research Program of Chinese Academy of Sciences[2022RC13] ; Fundamental Research Funds for the Central Universities ; BUPT Excellent Ph.D.[CX2022131] ; Students Foundation |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001180440700001 |
出版者 | WILEY-HINDAWI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/38791 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Luo, Haiyong |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing, Peoples R China 2.Chinese Acad Sci, Res Ctr Ubiquitous Comp Syst, Inst Comp Technol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Fan,Wei, Liangrui,Luo, Haiyong,et al. T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction[J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS,2024,2024:15. |
APA | Wu, Fan,Wei, Liangrui,Luo, Haiyong,Zhao, Fang,Ma, Xin,&Ning, Bokun.(2024).T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction.INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS,2024,15. |
MLA | Wu, Fan,et al."T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction".INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2024(2024):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论