CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction
Wu, Fan1; Wei, Liangrui1; Luo, Haiyong2; Zhao, Fang1; Ma, Xin1; Ning, Bokun1
2024-02-29
发表期刊INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
ISSN0884-8173
卷号2024页码:15
摘要GNSS (global navigation satellite systems) technology enables high-precision single-point positioning (SPP) in open environments. However, the accuracy of GNSS positioning is significantly compromised in complex urban canyons due to signal obstructions and non-line-of-sight propagation errors. To address this challenge, we propose a GNSS displacement estimation algorithm. This method learns nonlinear dependencies between GNSS raw measurements and corresponding position changes, capturing dynamic and layered features in GNSS measurement data for displacement estimation. We introduce a denoising auto-encoder (DAE) to preprocess raw GNSS observations, reducing the impact of noise. The model simultaneously outputs estimated displacement and model confidence. The fusion process dynamically combines positioning results from the SPP algorithm and the D-Tran model, adaptively blending them to achieve accurate and optimal positioning estimation. This approach optimizes the accuracy of estimated positioning results while maintaining confidence in the estimation. Experimental results show a 61% reduction in root mean square error (RMSE) and 100% availability in urban canyon environments compared to traditional single-point positioning techniques.
DOI10.1155/2024/6643723
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2022YFB3904700] ; National Key Research and Development Program[62261042] ; National Key Research and Development Program[62002026] ; National Natural Science Foundation of China ; Key Research Projects of the Joint Research Fund for Beijing Natural Science Foundation[L221003] ; Fengtai Rail Transit Frontier Research Joint Fund[4212024] ; Fengtai Rail Transit Frontier Research Joint Fund[4222034] ; Beijing Natural Science Foundation[XDA28040500] ; Strategic Priority Research Program of Chinese Academy of Sciences[2022RC13] ; Fundamental Research Funds for the Central Universities ; BUPT Excellent Ph.D.[CX2022131] ; Students Foundation
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001180440700001
出版者WILEY-HINDAWI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38791
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luo, Haiyong
作者单位1.Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing, Peoples R China
2.Chinese Acad Sci, Res Ctr Ubiquitous Comp Syst, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wu, Fan,Wei, Liangrui,Luo, Haiyong,et al. T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction[J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS,2024,2024:15.
APA Wu, Fan,Wei, Liangrui,Luo, Haiyong,Zhao, Fang,Ma, Xin,&Ning, Bokun.(2024).T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction.INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS,2024,15.
MLA Wu, Fan,et al."T-SPP: Improving GNSS Single-Point Positioning Performance Using Transformer-Based Correction".INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2024(2024):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Fan]的文章
[Wei, Liangrui]的文章
[Luo, Haiyong]的文章
百度学术
百度学术中相似的文章
[Wu, Fan]的文章
[Wei, Liangrui]的文章
[Luo, Haiyong]的文章
必应学术
必应学术中相似的文章
[Wu, Fan]的文章
[Wei, Liangrui]的文章
[Luo, Haiyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。