CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Text2Reaction : Enabling Reactive Task Planning Using Large Language Models
Yang, Zejun1,2; Ning, Li1,2; Wang, Haitao1,3; Jiang, Tianyu1,3; Zhang, Shaolin1,3; Cui, Shaowei1,3; Jiang, Hao1,2; Li, Chunpeng1,2; Wang, Shuo1,3; Wang, Zhaoqi1,2
2024-05-01
发表期刊IEEE ROBOTICS AND AUTOMATION LETTERS
ISSN2377-3766
卷号9期号:5页码:4003-4010
摘要To complete tasks in dynamic environments, robots need to timely update their plans to react to environment changes. Traditional stripe-like or learning-based planners struggle to achieve this due to their high reliance on meticulously predefined planning rules or labeled data. Fortunately, recent works find that Large Language Models (LLMs) can be effectively prompted to solve planning problems. Thus, we investigate the strategies for LLMs to master reactive planning problems without complex definitions and extra training. We propose Text2Reaction, an LLM-based framework enabling robots to continuously reason and update plans according to the latest environment changes. Inspired from human's step-by-step re-planning process, we present the Re-planning Prompt, which informs LLMs the basic principles of re-planning and fosters the gradual development of a current plan to a new one in a three-hop reasoning manner-cause analysis, consequence inference, and plan adjustment. In addition, Text2Reaction is designed to first generate an initial plan based on the task description before execution, allowing for subsequent iterative updates of this plan. We demonstrate the superior performance of Text2Reaction over prior works in reacting to various environment changes and completing varied tasks. In addition, we validate the reliability of our re-planning prompt through ablation experiments and its capability when deployed in real-world robots, enabling continuous reasoning in the face of diverse changes until the user instructions are successfully completed.
关键词Planning under uncertainty AI-based methods learning from demonstration
DOI10.1109/LRA.2024.3371223
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China
WOS研究方向Robotics
WOS类目Robotics
WOS记录号WOS:001189843900003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38759
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cui, Shaowei; Jiang, Hao
作者单位1.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yang, Zejun,Ning, Li,Wang, Haitao,et al. Text2Reaction : Enabling Reactive Task Planning Using Large Language Models[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2024,9(5):4003-4010.
APA Yang, Zejun.,Ning, Li.,Wang, Haitao.,Jiang, Tianyu.,Zhang, Shaolin.,...&Wang, Zhaoqi.(2024).Text2Reaction : Enabling Reactive Task Planning Using Large Language Models.IEEE ROBOTICS AND AUTOMATION LETTERS,9(5),4003-4010.
MLA Yang, Zejun,et al."Text2Reaction : Enabling Reactive Task Planning Using Large Language Models".IEEE ROBOTICS AND AUTOMATION LETTERS 9.5(2024):4003-4010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Zejun]的文章
[Ning, Li]的文章
[Wang, Haitao]的文章
百度学术
百度学术中相似的文章
[Yang, Zejun]的文章
[Ning, Li]的文章
[Wang, Haitao]的文章
必应学术
必应学术中相似的文章
[Yang, Zejun]的文章
[Ning, Li]的文章
[Wang, Haitao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。