CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering
Liu, Yu-Tao1,2; Wang, Li1,2; Yang, Jie1; Chen, Weikai3; Meng, Xiaoxu3; Yang, Bo3; Gao, Lin1,2
2024-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号46期号:4页码:2364-2377
摘要Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in the neural implicit rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we formalize the rules of neural volume rendering for open surface reconstruction (e.g., self-consistent, unbiased, occlusion-aware), and derive a dedicated rendering weight function specially tailored for UDF. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including two typical open surface datasets MGN (Bhatnagar et al., 2019) and Deep Fashion 3D (Zhu et al., 2020). Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art methods in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.
关键词Surface reconstruction Rendering (computer graphics) Image reconstruction Shape Image color analysis Topology Surface texture Unsigned distance fields volume rendering shape reconstruction from multi-view images open surfaces
DOI10.1109/TPAMI.2023.3335353
收录类别SCI
语种英语
资助项目CCF-Tencent Open Fund
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001180891600032
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38723
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Tencent Games Digital Content Technol Ctr, Santa Monica, CA 90404 USA
推荐引用方式
GB/T 7714
Liu, Yu-Tao,Wang, Li,Yang, Jie,et al. NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,46(4):2364-2377.
APA Liu, Yu-Tao.,Wang, Li.,Yang, Jie.,Chen, Weikai.,Meng, Xiaoxu.,...&Gao, Lin.(2024).NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,46(4),2364-2377.
MLA Liu, Yu-Tao,et al."NeUDF: Learning Neural Unsigned Distance Fields With Volume Rendering".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 46.4(2024):2364-2377.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yu-Tao]的文章
[Wang, Li]的文章
[Yang, Jie]的文章
百度学术
百度学术中相似的文章
[Liu, Yu-Tao]的文章
[Wang, Li]的文章
[Yang, Jie]的文章
必应学术
必应学术中相似的文章
[Liu, Yu-Tao]的文章
[Wang, Li]的文章
[Yang, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。