CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Synthesizing Knowledge-Enhanced Features for Real-World Zero-Shot Food Detection
Zhou, Pengfei1,2; Min, Weiqing1,2,3; Song, Jiajun1,2; Zhang, Yang1,2; Jiang, Shuqiang1,2,3
2024
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号33页码:1285-1298
摘要Food computing brings various perspectives to computer vision like vision-based food analysis for nutrition and health. As a fundamental task in food computing, food detection needs Zero-Shot Detection (ZSD) on novel unseen food objects to support real-world scenarios, such as intelligent kitchens and smart restaurants. Therefore, we first benchmark the task of Zero-Shot Food Detection (ZSFD) by introducing FOWA dataset with rich attribute annotations. Unlike ZSD, fine-grained problems in ZSFD like inter-class similarity make synthesized features inseparable. The complexity of food semantic attributes further makes it more difficult for current ZSD methods to distinguish various food categories. To address these problems, we propose a novel framework ZSFDet to tackle fine-grained problems by exploiting the interaction between complex attributes. Specifically, we model the correlation between food categories and attributes in ZSFDet by multi-source graphs to provide prior knowledge for distinguishing fine-grained features. Within ZSFDet, Knowledge-Enhanced Feature Synthesizer (KEFS) learns knowledge representation from multiple sources (e.g., ingredients correlation from knowledge graph) via the multi-source graph fusion. Conditioned on the fusion of semantic knowledge representation, the region feature diffusion model in KEFS can generate fine-grained features for training the effective zero-shot detector. Extensive evaluations demonstrate the superior performance of our method ZSFDet on FOWA and the widely-used food dataset UECFOOD-256, with significant improvements by 1.8% and 3.7% ZSD mAP compared with the strong baseline RRFS. Further experiments on PASCAL VOC and MS COCO prove that enhancement of the semantic knowledge can also improve the performance on general ZSD. Code and dataset are available at https://github.com/LanceZPF/KEFS.
关键词Semantics Feature extraction Visualization Annotations Correlation Training Task analysis Food detection zero-shot detection food computing object detection zero-shot learning
DOI10.1109/TIP.2024.3360899
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001173850100003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38711
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Min, Weiqing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Coll Comp Sci & Technol, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Intelligent Comp Technol, Suzhou 215124, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Pengfei,Min, Weiqing,Song, Jiajun,et al. Synthesizing Knowledge-Enhanced Features for Real-World Zero-Shot Food Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2024,33:1285-1298.
APA Zhou, Pengfei,Min, Weiqing,Song, Jiajun,Zhang, Yang,&Jiang, Shuqiang.(2024).Synthesizing Knowledge-Enhanced Features for Real-World Zero-Shot Food Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,33,1285-1298.
MLA Zhou, Pengfei,et al."Synthesizing Knowledge-Enhanced Features for Real-World Zero-Shot Food Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 33(2024):1285-1298.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Pengfei]的文章
[Min, Weiqing]的文章
[Song, Jiajun]的文章
百度学术
百度学术中相似的文章
[Zhou, Pengfei]的文章
[Min, Weiqing]的文章
[Song, Jiajun]的文章
必应学术
必应学术中相似的文章
[Zhou, Pengfei]的文章
[Min, Weiqing]的文章
[Song, Jiajun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。