CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Semantic and Correlation Disentangled Graph Convolutions for Multilabel Image Recognition
Cai, Shaofei1; Li, Liang1; Han, Xinzhe1,2; Huang, Shan3; Tian, Qi4; Huang, Qingming1,2,5
2023-11-30
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码13
摘要Multilabel image recognition (MLR) aims to annotate an image with comprehensive labels and suffers from object occlusion or small object sizes within images. Although the existing works attempt to capture and exploit label correlations to tackle these issues, they predominantly rely on global statistical label correlations as prior knowledge for guiding label prediction, neglecting the unique label correlations present within each image. To overcome this limitation, we propose a semantic and correlation disentangled graph convolution (SCD-GC) method, which builds the image-specific graph and employs graph propagation to reason the labels effectively. Specifically, we introduce a semantic disentangling module to extract categorywise semantic features as graph nodes and develop a correlation disentangling module to extract image-specific label correlations as graph edges. Performing graph convolutions on this image-specific graph allows for better mining of difficult labels with weak visual representations. Visualization experiments reveal that our approach successfully disentangles the dominant label correlations existing within the input image. Through extensive experimentation, we demonstrate that our method achieves superior results on the challenging Microsoft COCO (MS-COCO), PASCAL visual object classes (PASCAL-VOC), NUS web image dataset (NUS-WIDE), and Visual Genome 500 (VG-500) datasets. Code is available at GitHub: https://github.com/caigitrepo/SCDGC.
关键词Attention mechanism feature disentangling graph convolutional network (GCN) multilabel recognition
DOI10.1109/TNNLS.2023.3333542
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001121688300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38486
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100190, Peoples R China
3.Tencent, Beijing 100085, Peoples R China
4.Huawei Technol, Cloud BU, Shenzhen 100190, Peoples R China
5.Peng Cheng Lab, Shenzhen 518066, Peoples R China
推荐引用方式
GB/T 7714
Cai, Shaofei,Li, Liang,Han, Xinzhe,et al. Semantic and Correlation Disentangled Graph Convolutions for Multilabel Image Recognition[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023:13.
APA Cai, Shaofei,Li, Liang,Han, Xinzhe,Huang, Shan,Tian, Qi,&Huang, Qingming.(2023).Semantic and Correlation Disentangled Graph Convolutions for Multilabel Image Recognition.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,13.
MLA Cai, Shaofei,et al."Semantic and Correlation Disentangled Graph Convolutions for Multilabel Image Recognition".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, Shaofei]的文章
[Li, Liang]的文章
[Han, Xinzhe]的文章
百度学术
百度学术中相似的文章
[Cai, Shaofei]的文章
[Li, Liang]的文章
[Han, Xinzhe]的文章
必应学术
必应学术中相似的文章
[Cai, Shaofei]的文章
[Li, Liang]的文章
[Han, Xinzhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。