CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Improving fraud detection via imbalanced graph structure learning
Ren, Lingfei1,2; Hu, Ruimin1,2,5; Liu, Yang3; Li, Dengshi1,4; Wu, Junhang1,2; Zang, Yilong1,2; Hu, Wenyi1,2
2023-11-29
发表期刊MACHINE LEARNING
ISSN0885-6125
页码22
摘要Graph-based fraud detection methods have recently attracted much attention due to the rich relational information of graph-structured data, which may facilitate the detection of fraudsters. However, the GNN-based algorithms may exhibit unsatisfactory performance faced with graph heterophily as the fraudsters usually disguise themselves by deliberately making extensive connections to normal users. In addition to this, the class imbalance problem also causes GNNs to overfit normal users and perform poorly for fraudsters. To address these problems, we propose an Imbalanced Graph Structure Learning framework for fraud detection (IGSL for short). Specifically, nodes are picked with a devised multi-relational class-balanced sampler for mini-batch training. Then, an iterative graph structure learning module is proposed to iteratively construct a global homophilic adjacency matrix in the embedding domain. Further, an anchor node message passing mechanism is proposed to reduce the computational complexity of the constructing homophily adjacency matrix. Extensive experiments on benchmark datasets show that IGSL achieves significantly better performance even when the graph is heavily heterophilic and imbalanced.
关键词Fraud detection Graph structure learning Homophily Heterophily
DOI10.1007/s10994-023-06464-0
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001120020800008
出版者SPRINGER
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38470
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hu, Ruimin
作者单位1.Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan, Peoples R China
2.Wuhan Univ, Hubei Key Lab Multimedia & Network Commun Engn, Wuhan, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
4.Jianghan Univ, Sch Artificial Intelligence, Wuhan, Peoples R China
5.Xidian Univ, Sch Cyber Engn, Xian, Peoples R China
推荐引用方式
GB/T 7714
Ren, Lingfei,Hu, Ruimin,Liu, Yang,et al. Improving fraud detection via imbalanced graph structure learning[J]. MACHINE LEARNING,2023:22.
APA Ren, Lingfei.,Hu, Ruimin.,Liu, Yang.,Li, Dengshi.,Wu, Junhang.,...&Hu, Wenyi.(2023).Improving fraud detection via imbalanced graph structure learning.MACHINE LEARNING,22.
MLA Ren, Lingfei,et al."Improving fraud detection via imbalanced graph structure learning".MACHINE LEARNING (2023):22.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Lingfei]的文章
[Hu, Ruimin]的文章
[Liu, Yang]的文章
百度学术
百度学术中相似的文章
[Ren, Lingfei]的文章
[Hu, Ruimin]的文章
[Liu, Yang]的文章
必应学术
必应学术中相似的文章
[Ren, Lingfei]的文章
[Hu, Ruimin]的文章
[Liu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。