CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework
Yu, Feng1,2; Zhao, Jia-Cheng1,2; Cui, Hui-Min1,2; Feng, Xiao-Bing1,2; Xue, Jingling3
2023-09-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号38期号:5页码:1074-1097
摘要Tensors are a popular programming interface for developing artificial intelligence (AI) algorithms. Layout refers to the order of placing tensor data in the memory and will affect performance by affecting data locality; therefore the deep neural network library has a convention on the layout. Since AI applications can use arbitrary layouts, and existing AI systems do not provide programming abstractions to shield the layout conventions of libraries, operator developers need to write a lot of layout-related code, which reduces the efficiency of integrating new libraries or developing new operators. Furthermore, the developer assigns the layout conversion operation to the internal operator to deal with the uncertainty of the input layout, thus losing the opportunity for layout optimization. Based on the idea of polymorphism, we propose a layout-agnostic virtual tensor programming interface, namely the VTensor framework, which enables developers to write new operators without caring about the underlying physical layout of tensors. In addition, the VTensor framework performs global layout inference at runtime to transparently resolve the required layout of virtual tensors, and runtime layout-oriented optimizations to globally minimize the number of layout transformation operations. Experimental results demonstrate that with VTensor, developers can avoid writing layout-dependent code. Compared with TensorFlow, for the 16 operations used in 12 popular networks, VTensor can reduce the lines of code (LOC) of writing a new operation by 47.82% on average, and improve the overall performance by 18.65% on average.
关键词artificial intelligence (AI) programming layout-oblivious tensor processing
DOI10.1007/s11390-022-1457-6
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2021ZD0110101] ; National Natural Science Foundation of China[62090024] ; National Natural Science Foundation of China[61872043] ; National Natural Science Foundation of China[61802368] ; Australian Research Council[DP180104069] ; Australian Research Council[DP210102409]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001114345700008
出版者SPRINGER SINGAPORE PTE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38460
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cui, Hui-Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100080, Peoples R China
3.Univ New South Wales, Sch Comp Sci & Engn, Sydney 1466, Australia
推荐引用方式
GB/T 7714
Yu, Feng,Zhao, Jia-Cheng,Cui, Hui-Min,et al. VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2023,38(5):1074-1097.
APA Yu, Feng,Zhao, Jia-Cheng,Cui, Hui-Min,Feng, Xiao-Bing,&Xue, Jingling.(2023).VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,38(5),1074-1097.
MLA Yu, Feng,et al."VTensor: Using Virtual Tensors to Build a Layout-Oblivious AI Programming Framework".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38.5(2023):1074-1097.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Feng]的文章
[Zhao, Jia-Cheng]的文章
[Cui, Hui-Min]的文章
百度学术
百度学术中相似的文章
[Yu, Feng]的文章
[Zhao, Jia-Cheng]的文章
[Cui, Hui-Min]的文章
必应学术
必应学术中相似的文章
[Yu, Feng]的文章
[Zhao, Jia-Cheng]的文章
[Cui, Hui-Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。