CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring
Hu, Chun-Yu1,2,3; Hu, Li-Sha4; Yuan, Lin1,2; Lu, Dian-Jie3,5; Lyu, Lei3,5; Chen, Yi-Qiang6
2023-09-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号38期号:5页码:970-984
摘要Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption. However, most wearable health data is distributed across different organizations, such as hospitals, research institutes, and companies, and can only be accessed by the owners of the data in compliance with data privacy regulations. The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations. The second technical challenge is handling the dynamic expansion of the federation without model retraining. To address the first challenge, we propose a horizontal federated learning method called Federated Extremely Random Forest (FedERF). Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance. Based on FedERF, we present a federated incremental learning method called Federated Incremental Extremely Random Forest (FedIERF) to address the second technical challenge. FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally. The experiments show that FedERF achieves comparable performance with non-federated methods, and FedIERF effectively addresses the dynamic expansion of the federation. This opens up opportunities for cooperation between different organizations in wearable health monitoring.
关键词federated learning incremental learning random forest wearable health monitoring
DOI10.1007/s11390-023-3009-0
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62002187] ; National Natural Science Foundation of China[62002189] ; National Natural Science Foundation of China[61972383] ; National Natural Science Foundation of China[61972237] ; National Natural Science Foundation of China[61976127] ; Science Research Project of Hebei Education Department of China[QN2023184]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001114345700009
出版者SPRINGER SINGAPORE PTE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38456
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yi-Qiang
作者单位1.Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Natl Supercomp Ctr Jinan,Key Lab Comp Power Networ, Jinan 250353, Peoples R China
2.Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan 250000, Peoples R China
3.Shandong Prov Key Lab Novel Distributed Comp Softw, Jinan 250000, Peoples R China
4.Hebei Univ Econ & Business, Inst Informat Technol, Shijiazhuang 050061, Peoples R China
5.Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
6.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Hu, Chun-Yu,Hu, Li-Sha,Yuan, Lin,et al. FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2023,38(5):970-984.
APA Hu, Chun-Yu,Hu, Li-Sha,Yuan, Lin,Lu, Dian-Jie,Lyu, Lei,&Chen, Yi-Qiang.(2023).FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,38(5),970-984.
MLA Hu, Chun-Yu,et al."FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38.5(2023):970-984.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Chun-Yu]的文章
[Hu, Li-Sha]的文章
[Yuan, Lin]的文章
百度学术
百度学术中相似的文章
[Hu, Chun-Yu]的文章
[Hu, Li-Sha]的文章
[Yuan, Lin]的文章
必应学术
必应学术中相似的文章
[Hu, Chun-Yu]的文章
[Hu, Li-Sha]的文章
[Yuan, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。