CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploiting global contextual information for document-level named entity recognition
Yu, Yiting1; Wang, Zanbo1; Wei, Wei1; Zhang, Ruihan1; Mao, Xian-Ling2; Feng, Shanshan3; Wang, Fei4; He, Zhiyong5; Jiang, Sheng1
2024-01-25
发表期刊KNOWLEDGE-BASED SYSTEMS
ISSN0950-7051
卷号284页码:10
摘要Named entity recognition (NER, also known as entity chunking/extraction) is a fundamental sub-task of information extraction, which aims at identifying named entities from an unstructured text into pre-defined classes. Most of the existing works mainly focus on modeling local-context dependencies in a single sentence for entity type prediction. However, they may neglect the clues derived from other sentences within a document, and thus suffer from the sentence-level inherent ambiguity issue, which may make their performance drop to some extent. To this end, we propose a Global Context enhanced Document-level NER (GCDoc) model for NER to fully exploit the global contextual information of a document in different levels, i.e., word-level and sentence-level. Specifically, GCDoc constructs a document graph to capture the global dependencies of words for enriching the representations of each word in word-level. Then, it encodes the adjacent sentences for exploring the contexts across sentences to enhance the representation of the current sentence via the specially devised attention mechanism. Extensive experiments on two benchmark NER datasets (i.e., CoNLL 2003 and Onenotes 5.0 English dataset) demonstrate the effectiveness of our proposed model, as compared to the competitive baselines.
关键词Named entity recognition Global contextual information Graph neural network Epistemic uncertainty
DOI10.1016/j.knosys.2023.111266
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62276110] ; National Natural Science Foundation of China[62172039] ; Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001132970800001
出版者ELSEVIER
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38434
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wei, Wei
作者单位1.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Cognit Comp & Intelligent Informat Proc CCIIP Lab, Wuhan, Peoples R China
2.Beijing Inst Technol, Dept Comp Sci & Technol, Beijing, Peoples R China
3.ASTAR, Ctr Frontier AI Res, IHPC, Singapore City, Singapore
4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
5.Naval Univ Engn, Sch Elect Engn, Wuhan, Peoples R China
推荐引用方式
GB/T 7714
Yu, Yiting,Wang, Zanbo,Wei, Wei,et al. Exploiting global contextual information for document-level named entity recognition[J]. KNOWLEDGE-BASED SYSTEMS,2024,284:10.
APA Yu, Yiting.,Wang, Zanbo.,Wei, Wei.,Zhang, Ruihan.,Mao, Xian-Ling.,...&Jiang, Sheng.(2024).Exploiting global contextual information for document-level named entity recognition.KNOWLEDGE-BASED SYSTEMS,284,10.
MLA Yu, Yiting,et al."Exploiting global contextual information for document-level named entity recognition".KNOWLEDGE-BASED SYSTEMS 284(2024):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Yiting]的文章
[Wang, Zanbo]的文章
[Wei, Wei]的文章
百度学术
百度学术中相似的文章
[Yu, Yiting]的文章
[Wang, Zanbo]的文章
[Wei, Wei]的文章
必应学术
必应学术中相似的文章
[Yu, Yiting]的文章
[Wang, Zanbo]的文章
[Wei, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。