CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Streamlining spatial omics data analysis with Pysodb
Lin, Senlin1,2; Zhao, Fangyuan1,2; Wu, Zihan3; Yao, Jianhua3; Zhao, Yi1,2; Yuan, Zhiyuan4,5
2023-12-22
发表期刊NATURE PROTOCOLS
ISSN1754-2189
页码72
摘要Advances in spatial omics technologies have improved the understanding of cellular organization in tissues, leading to the generation of complex and heterogeneous data and prompting the development of specialized tools for managing, loading and visualizing spatial omics data. The Spatial Omics Database (SODB) was established to offer a unified format for data storage and interactive visualization modules. Here we detail the use of Pysodb, a Python-based tool designed to enable the efficient exploration and loading of spatial datasets from SODB within a Python environment. We present seven case studies using Pysodb, detailing the interaction with various computational methods, ensuring reproducibility of experimental data and facilitating the integration of new data and alternative applications in SODB. The approach offers a reference for method developers by outlining label and metadata availability in representative spatial data that can be loaded by Pysodb. The tool is supplemented by a website (https://protocols-pysodb.readthedocs.io/) with detailed information for benchmarking analysis, and allows method developers to focus on computational models by facilitating data processing. This protocol is designed for researchers with limited experience in computational biology. Depending on the dataset complexity, the protocol typically requires similar to 12 h to complete.
DOI10.1038/s41596-023-00925-5
收录类别SCI
语种英语
资助项目Chenguang Program of Shanghai Education Development Foundation ; Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission, Shanghai Science and Technology Development Funds[23YF1403000] ; Tencent AI Lab Rhino-Bird Focused Research Program[RBFR2023008] ; Shanghai Municipal Science and Technology Major Project[2018SHZDZX01]
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemical Research Methods
WOS记录号WOS:001130466600001
出版者NATURE PORTFOLIO
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38426
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Yi; Yuan, Zhiyuan
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Tencent AI Lab, Shenzhen, Peoples R China
4.Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, MOE Frontiers Ctr Brain Sci, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
5.Fudan Univ, Pudong Med Ctr, Shanghai Pudong Hosp, Ctr Med Res & Innovat, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Lin, Senlin,Zhao, Fangyuan,Wu, Zihan,et al. Streamlining spatial omics data analysis with Pysodb[J]. NATURE PROTOCOLS,2023:72.
APA Lin, Senlin,Zhao, Fangyuan,Wu, Zihan,Yao, Jianhua,Zhao, Yi,&Yuan, Zhiyuan.(2023).Streamlining spatial omics data analysis with Pysodb.NATURE PROTOCOLS,72.
MLA Lin, Senlin,et al."Streamlining spatial omics data analysis with Pysodb".NATURE PROTOCOLS (2023):72.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Senlin]的文章
[Zhao, Fangyuan]的文章
[Wu, Zihan]的文章
百度学术
百度学术中相似的文章
[Lin, Senlin]的文章
[Zhao, Fangyuan]的文章
[Wu, Zihan]的文章
必应学术
必应学术中相似的文章
[Lin, Senlin]的文章
[Zhao, Fangyuan]的文章
[Wu, Zihan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。