CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A prompt-based approach to adversarial example generation and robustness enhancement
Yang, Yuting1,2; Huang, Pei3; Cao, Juan1,2; Li, Jintao1; Lin, Yun4; Ma, Feifei2,5
2024-08-01
发表期刊FRONTIERS OF COMPUTER SCIENCE
ISSN2095-2228
卷号18期号:4页码:12
摘要Recent years have seen the wide application of natural language processing (NLP) models in crucial areas such as finance, medical treatment, and news media, raising concerns about the model robustness and vulnerabilities. We find that prompt paradigm can probe special robust defects of pre-trained language models. Malicious prompt texts are first constructed for inputs and a pre-trained language model can generate adversarial examples for victim models via maskfilling. Experimental results show that prompt paradigm can efficiently generate more diverse adversarial examples besides synonym substitution. Then, we propose a novel robust training approach based on prompt paradigm which incorporates prompt texts as the alternatives to adversarial examples and enhances robustness under a lightweight minimax-style optimization framework. Experiments on three real-world tasks and two deep neural models show that our approach can significantly improve the robustness of models to resist adversarial attacks.
关键词robustness adversarial example prompt learning pre-trained language model
DOI10.1007/s11704-023-2639-2
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2021AAA0140203] ; Zhejiang Provincial Key Research and Development Program of China[2021C01164] ; National Natural Science Foundation of China[61972384] ; National Natural Science Foundation of China[62132020] ; National Natural Science Foundation of China[62203425]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001130418100004
出版者HIGHER EDUCATION PRESS
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38410
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Juan; Ma, Feifei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
4.Natl Univ Singapore, Sch Comp, Singapore 119077, Singapore
5.Chinese Acad Sci, Inst Software, Lab Parallel Software & Computat Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yang, Yuting,Huang, Pei,Cao, Juan,et al. A prompt-based approach to adversarial example generation and robustness enhancement[J]. FRONTIERS OF COMPUTER SCIENCE,2024,18(4):12.
APA Yang, Yuting,Huang, Pei,Cao, Juan,Li, Jintao,Lin, Yun,&Ma, Feifei.(2024).A prompt-based approach to adversarial example generation and robustness enhancement.FRONTIERS OF COMPUTER SCIENCE,18(4),12.
MLA Yang, Yuting,et al."A prompt-based approach to adversarial example generation and robustness enhancement".FRONTIERS OF COMPUTER SCIENCE 18.4(2024):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Yuting]的文章
[Huang, Pei]的文章
[Cao, Juan]的文章
百度学术
百度学术中相似的文章
[Yang, Yuting]的文章
[Huang, Pei]的文章
[Cao, Juan]的文章
必应学术
必应学术中相似的文章
[Yang, Yuting]的文章
[Huang, Pei]的文章
[Cao, Juan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。