CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Curricular-balanced long-tailed learning
Xiang, Xiang1; Zhang, Zihan1; Chen, Xilin2
2024-02-28
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号571页码:13
摘要The real-world data distribution is essentially long-tailed, which poses a significant challenge to the deep model. Classification models minimizing cross-entropy loss struggle to classify the tail classes, although cross-entropy training is successful on balanced data. We reveal that minimizing cross-entropy loss under long-tailed distribution leads to the Tail Collapse phenomenon, which fundamentally limits the performance of neural networks. To correct the optimization behavior of cross-entropy training, we propose a new Curricular Balanced Loss (CurB Loss) to alleviate the imbalance. The CurB loss has two factors: the re-weighting factor and the curriculum learning factor. We design the re-weighting factor based on the margin-based training that can theoretically reach the optimums of networks. Then, we incorporate the idea of Curriculum Learning into the re-weighting loss in an adaptive manner. We design the curriculum learning factor to make the model gradually emphasize the hard classes. The empirical results demonstrate the complementary of the two factors. Our method outperforms previous state-of-the-art methods by 0.9%, 2.7%, 1.2% on CIFAR10-LT, CIFAR-100-LT and ImageNet-LT, demonstrating the effectiveness of CurB Loss for long-tailed visual recognition.
关键词Long-tailed learning Re-weighting loss Curriculum learning
DOI10.1016/j.neucom.2023.127121
收录类别SCI
语种英语
资助项目Natural Science Fund of Hubei Province[2022CFB823] ; HUST Independent Innovation Research Fund[2021XXJS096] ; Alibaba Innovation Research Program[CRAQ7WHZ11220001-20978282]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001148963100001
出版者ELSEVIER
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38400
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xiang, Xiang
作者单位1.Huazhong Univ Sci & Technol HUST, Sch Artificial Intelligence & Automat, Natl Key Lab Multispectral Informat Intelligent Pr, Wuhan, Peoples R China
2.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Xiang, Xiang,Zhang, Zihan,Chen, Xilin. Curricular-balanced long-tailed learning[J]. NEUROCOMPUTING,2024,571:13.
APA Xiang, Xiang,Zhang, Zihan,&Chen, Xilin.(2024).Curricular-balanced long-tailed learning.NEUROCOMPUTING,571,13.
MLA Xiang, Xiang,et al."Curricular-balanced long-tailed learning".NEUROCOMPUTING 571(2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiang, Xiang]的文章
[Zhang, Zihan]的文章
[Chen, Xilin]的文章
百度学术
百度学术中相似的文章
[Xiang, Xiang]的文章
[Zhang, Zihan]的文章
[Chen, Xilin]的文章
必应学术
必应学术中相似的文章
[Xiang, Xiang]的文章
[Zhang, Zihan]的文章
[Chen, Xilin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。