Institute of Computing Technology, Chinese Academy IR
DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures | |
Qiao, Yixuan1,2; Yang, Rui1,2; Liu, Yang1,2; Chen, Jiaxin1; Zhao, Lianhe1; Huo, Peipei1; Wang, Zhihao1; Bu, Dechao1; Wu, Yang1; Zhao, Yi1,2 | |
2024-12-01 | |
发表期刊 | COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL |
ISSN | 2001-0370 |
卷号 | 23页码:617-625 |
摘要 | RNA -binding proteins (RBPs) are key post -transcriptional regulators, and the malfunctions of RBP-RNA binding lead to diverse human diseases. However, prediction of RBP binding sites is largely based on RNA sequence features, whereas in vivo RNA structural features based on high -throughput sequencing are rarely incorporated. Here, we designed a deep bimodal information fusion network called DeepFusion for unraveling protein -RNA interactions by incorporating structural features derived from DMS-seq data. DeepFusion integrates two submodels to extract local motif -like information and long-term context information. We show that DeepFusion performs best compared with other cutting -edge methods with only sequence inputs on two datasets. DeepFusion's performance is further improved with bimodal input after adding in vivo DMS-seq structural features. Furthermore, DeepFusion can be used for analyzing RNA degradation, demonstrating significantly different RBPbinding scores in genes with slow degradation rates versus those with rapid degradation rates. DeepFusion thus provides enhanced abilities for further analysis of functional RNAs. DeepFusion's code and data are available at http://bioinfo.org/deepfusion/. |
关键词 | Information fusion Deep learning RNA -binding proteins In vivo RNA structures Motifs |
DOI | 10.1016/j.csbj.2023.12.040 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2022YFC3500105] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA16021400] ; National Natural Science Foundation of China[82172864] ; National Natural Science Foundation of China[32070670] ; Innovation Fund from Institute of Computing Technology, CAS[E161080] ; Zhejiang Provincial Natural Science Foundation of China[LY21C060003] ; Beijing Natural Science Foundation Haidian Origination and Innovation Joint Fund[L222007] |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology |
WOS类目 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology |
WOS记录号 | WOS:001154337300001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/38384 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wu, Yang; Zhao, Yi |
作者单位 | 1.Chinese Acad Sci, Res Ctr Ubiquitous Comp Syst, Inst Comp Technol, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Qiao, Yixuan,Yang, Rui,Liu, Yang,et al. DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures[J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,2024,23:617-625. |
APA | Qiao, Yixuan.,Yang, Rui.,Liu, Yang.,Chen, Jiaxin.,Zhao, Lianhe.,...&Zhao, Yi.(2024).DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,23,617-625. |
MLA | Qiao, Yixuan,et al."DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures".COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL 23(2024):617-625. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论