CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures
Qiao, Yixuan1,2; Yang, Rui1,2; Liu, Yang1,2; Chen, Jiaxin1; Zhao, Lianhe1; Huo, Peipei1; Wang, Zhihao1; Bu, Dechao1; Wu, Yang1; Zhao, Yi1,2
2024-12-01
发表期刊COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
ISSN2001-0370
卷号23页码:617-625
摘要RNA -binding proteins (RBPs) are key post -transcriptional regulators, and the malfunctions of RBP-RNA binding lead to diverse human diseases. However, prediction of RBP binding sites is largely based on RNA sequence features, whereas in vivo RNA structural features based on high -throughput sequencing are rarely incorporated. Here, we designed a deep bimodal information fusion network called DeepFusion for unraveling protein -RNA interactions by incorporating structural features derived from DMS-seq data. DeepFusion integrates two submodels to extract local motif -like information and long-term context information. We show that DeepFusion performs best compared with other cutting -edge methods with only sequence inputs on two datasets. DeepFusion's performance is further improved with bimodal input after adding in vivo DMS-seq structural features. Furthermore, DeepFusion can be used for analyzing RNA degradation, demonstrating significantly different RBPbinding scores in genes with slow degradation rates versus those with rapid degradation rates. DeepFusion thus provides enhanced abilities for further analysis of functional RNAs. DeepFusion's code and data are available at http://bioinfo.org/deepfusion/.
关键词Information fusion Deep learning RNA -binding proteins In vivo RNA structures Motifs
DOI10.1016/j.csbj.2023.12.040
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2022YFC3500105] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA16021400] ; National Natural Science Foundation of China[82172864] ; National Natural Science Foundation of China[32070670] ; Innovation Fund from Institute of Computing Technology, CAS[E161080] ; Zhejiang Provincial Natural Science Foundation of China[LY21C060003] ; Beijing Natural Science Foundation Haidian Origination and Innovation Joint Fund[L222007]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS类目Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS记录号WOS:001154337300001
出版者ELSEVIER
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38384
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wu, Yang; Zhao, Yi
作者单位1.Chinese Acad Sci, Res Ctr Ubiquitous Comp Syst, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Yixuan,Yang, Rui,Liu, Yang,et al. DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures[J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,2024,23:617-625.
APA Qiao, Yixuan.,Yang, Rui.,Liu, Yang.,Chen, Jiaxin.,Zhao, Lianhe.,...&Zhao, Yi.(2024).DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,23,617-625.
MLA Qiao, Yixuan,et al."DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures".COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL 23(2024):617-625.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, Yixuan]的文章
[Yang, Rui]的文章
[Liu, Yang]的文章
百度学术
百度学术中相似的文章
[Qiao, Yixuan]的文章
[Yang, Rui]的文章
[Liu, Yang]的文章
必应学术
必应学术中相似的文章
[Qiao, Yixuan]的文章
[Yang, Rui]的文章
[Liu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。